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A method for computing the skin-stiffener interface stresses in stiffened composite panels 

is developed. Both geometrically linear and nonlinear analyses are considered. Particular 

attention is given to the flange termination region where stresses are expected to exhibit un- 

bounded characteristics. The method is based on a finite-element analysis and an elasticity 

solution. The finite-element analysis is standard, while the elasticity solution is based on an 

eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be 

valid in the local flange termination region and is coupled with the finite-element analysis 

using collocation of stresses on the local region boundaries. In the first part of the investi- 

gation the accuracy and convergence of the local elasticity solution are assessed using a 

geometrically linear analysis. It is found that the finite-element/local elasticity solution scheme 

produces a very accurate interface stress representation in the local flange termination re- 

gion. The use of 10 to 15 eigenvalues, in the eigenvalue expansion series, and 100 collocation 

points results in a converged local elasticity solution. In the second part of the investigation, 

the local elasticity solution is extended to include geometric nonlinearities. Using this analysis 

procedure, the influence of geometric nonlinearities on skin-stiffener interface stresses is 

evaluated. It is found that in flexible stiffened skin structures, which exhibit out-of-plane de- 

formation on the order of 2 to 4 times the skin thickness, inclusion of geometrically nonlinear 

effects in the calculation of interface stresses is very important. Thus, the use of a geomet- 

rically linear analysis, rather than a nonlinear analysis, can lead to considerable error in the 

computation of the interface stresses. Finally, using the analytical tool developed in this in- 

vestigation, it is possible to study the influence of stiffener parameters on the state of interface 

stresses. 
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I. Introduction 

In recent years there has been a dramatic increase in the use of composite materials in 

aircraft structures. Compared to metallic structures, the cost benefits, performance increase, 

and weight reductions which can be realized are substantial. As with metallic structures, one 

of the primary components in aircrafl structures is the skin-stiffener combination. In traditional 

metallic structures the stiffener is attached to the skin by rivets. In severe loading conditions, 

such as those that occur during postbuckling, the rivets provide a site for yielding of the metal. 

As a result, failure in the form of local yielding may occur but the failure does not necessarily 

cripple the structure as a whole. On the other hand, composite materials are brittle and do 

not yield. Holes and other geometric discontinuities are sites for high stresses that ultimately 

cause the failure of the structure as a whole. Therefore, the use of rivets as the method of 

stiffener attachment is less attractive with composites than it has been with metals. A more 

common method of stiffener-to-skin attachment in composite structures is by an adhesive 

secondary bonding or by the cocuring of the stiffener and skin. 

a 
Because of the differences in material properties and the lack of riveting, the failure char- 

acteristics observed with bonded or cocured stiffened composite skins are quite different from 

the failures encountered in riveted metallic structures. Failure in stiffened composite skins 

occurs in a much more catastrophic manner, being initiated by skin-stiffener separation [I]. 

1. Introduction I 



Further, it has been shown [2] that stiffened composite panels can fail prematurely, below the 

design load, due to skin-stiffener separation. One such mode of failure has been observed to 

initiate at the flange termination region. Figure 1 illustrates an example of this type of failure. 

Because of observations such as shown in Figure 1, it is believed that the stresses in the 

flange termination region are high. High skin-stiffener interface stresses can be attributed to 

a number of factors. First, there is the structural incompatibility associated with the deforma- 

tion of the skin and deformation of the stiffener when the skin-stiffener combination is sub- 

jected to applied loads. This incompatibility is particularly acute in the postbuckling state. In 

addition, if the stiffener is bonded to the skin, the flange termination region leads to a ge- 

ometric discontinuity in the structure. This region tends to serve as an area of increased 

stress. Finally, in stiffened composite skins the problem is compounded by an additional 

complication. In order to gain full advantage of the tailoribility of composite materials, gener- 

ally the stiffener and the skin are constructed of different material layups. Such material dis- 

continuity at the interface can lead to significant skin-stiffener interface stresses. It is the 

primary purpose of the present study to develop a method by which the stresses in this region 

can be accurately determined, and to use the method to investigate the influence of various 

stiffener parameters on the stresses in this region. Though the flange termination region is 

of primary concern, stresses at all locations along the interface are computed. 

To predict the skin-stiffener interface stresses, different levels of analytic complexity can 

be used. However, it is generally acknowledged that the analytical model should incorporate 

a few key features. First, the model should accurately represent the geometric and material 

discontinuities associated with the flange termination. As with free edge stresses, these ge- 

ometric and material discontinuities can cause the stresses in the flange termination region 

to be unbounded. When present, these unbounded stresses can be responsible for the initi- 

ation of skin-stiffener separation and should be accounted for. Secondly, since stiffened panels 

are most commonly designed to operate at the postbuckling range, the analysis must incor- 

porate geometrically nonlinear effects. Third, for the analytic tool to be useful in the design 
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process, it must be sensitive enough to various design parameters, e.g., stiffener geometry 

and skin/stiffener material architecture. In addition to these three key factors, there is the is- 

sue of computational efficiency or cost. The computational cost should not be so large as to 

prohibit its use as a tool for parametric studies or for the design of a stiffened structure. And 

finally, the analysis should be such that it can be integrated into any proposed computational 

schemes or testbeds [3,4]. 

Considering the severity of the problem, there have been few studies of skin-stiffener 

interface stresses. One of the more notable ones is discussed in [5]. In this investigation the 

skin and flange were treated as separate orthotropic plate elements. These elements were 

held together via interface forces, the forces being taken as unknowns. The stiffness of the 

other stiffener elements, such as the web and the cap, were treated as extensional and rota- 

tional springs. The solution to the problem was formulated using the principle of virtual work 

and the theorem of minimum potential energy. Although in the postbuckling range the skin 

will actually experience moderate to large rotations, the analysis assumed only geometric 

linear deformation theory. Other studies [6-91 have considered similar problems, namely the 

adhesively bonded lap joints. In these studies the two adherents were treated as plates under 

cylindrical bending and/or inplane loads. In [S-81 the adhesive was modeled as shear spring 

only or tension-shear spring combination, and in 191 it was treated as an elastic layer in which 

the stresses did not vary across the adhesive thickness. In all of these studies a solution for 

the variation of shearing and peeling stresses in the adhesive was obtained. In [9] the derived 

solution was also applied to a simplified stiffened composite plate geometry. These investi- 

gations looked at simplified geometries and loading conditions. Hence, although these studies 

are important in furthering the understanding of adhesively bonded components, they cannot 

be applied in their present form to the study of stiffened composite aircraft structures. This is 

due to the fact that such structures tend to have complex geometries and loading conditions. 

In addition, the above studies did not address the issue of geometric nonlinearities. 
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Due to the problems in the previous analytical models discussed above, a more detailed 

analysis was undertaken. As stated above, and reiterated here, the following key require- 

ments were imposed: a) The model should accurately represent the state of stress near the 

point of geometric and material discontinuity; b) The model should be applicable to the ge- 

ometric nonlinear range; and c) The model should be sensitive in its stress prediction to var- 

ious design parameters, such as stiffener geometry and stiffenerkkin material architecture. 

To meet these requirements, an analysis is developed in which the stress predictions are 

based on a generalized plane deformation elasticity solution in combination with standard 

finite-element calculations. The elasticity solution is valid in the localized region near the ter- 

mination of the stiffener flange. The finite-element calculations are valid for the structure as 

a whole, except near the flange termination region. The elasticity solution uses an eigenvalue 

expansion of the stress function to predict the stresses. The expansion is applicable in the 

flange termination region and satisfies exactly the boundary conditions there. The eigenvalue 

expansion is known to within arbitrary, but unknown, coefficients which are associated with 

each eigenvalue. The stresses from the finite-element solution and collocation scheme are 

used for determining the constants and thus uniquely determining the stresses in the localized 

region. 

In the next chapters various aspects of the investigation will be discussed. In chapter 2 the 

development of the analytical method and its verification are delineated. The derivations in 

this chapter are for geometrically linear analysis only. In chapter 3 it is shown how the meth- 

odology developed in chapter 2 may be extended to include geometric nonlinearities (Le., 

moderate rotations). This is followed by a discussion of the application of this extension to the 

study of interface stresses in stiffened composite plates. In chapter 4, numerical results are 

presented. These results highlight the effect of including geometric nonlinearities in the 

analysis on skin-stiffener interface stresses. In addition, the effect of various stiffener ge- 

ometric and material parameters are evaluated. The study ends with some concluding re- 

marks and recommendations for future research. 
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2. Analytical Method Development 

2.1 Analysis Overview and Relevant Literature 

To facilitate the following discussion, a skin-stiffener cross-section being studied is shown 

in Figure 2. Note the location of the coordinate system in the figure and the nomenclature 

associated with the cross-section. Several coordinate systems will be used hereafter and it 

will be important to differentiate between them. Interest focuses on the computation of inter- 

face stresses at the skin-stiffener interface, along the line y=O. The type of stiffener shown, 

a blade stiffener, is only to serve as an example. Other stiffener types such as hat, I, and J 

can be studied with the type of analysis being developed. It should be noted that the flange 

can terminate at various angles, a, (see Figure 2), relative to the skin. The shaded area, 

shown in the exploded view, is referred to as the local region. This is the region where the 

elasticity solution is valid. The region outside of the shaded area, referred to as the global 

region, is the region where the finite-element solution is valid. It will be assumed that 

Figure 2 represents a cross-section of a stiffened panel that is long enough that the stress 

state does not vary in the stiffener direction in the region of interest. That is, in the nomen- 

clature of the figure, the stresses do not vary with the z coordinate. 
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A linear analysis of the local region, as depicted in Figure 3, consists of finding the solution 

to the equations of elasticity valid in a region enclosed by an arbitrary corner opening created 

by two dissimilar orthotropic materials bonded along y=O, and subjected to known boundary 

conditions. The literature regarding this problem is extensive and no attempt is made to cover 

all of it, instead some of the more important studies directly relevant to our investigation will 

be discussed. Williams [ l l ]  was the first to investigate the solution to an arbitrary corner in 

an isotropic plate in the form of an eigenfunction expansion. His solution was used extensively 

by Gross et al [12-161 in the numerical computations of stress intensity factors of various 4 

fracture toughness specimens. Carpenter [I71 used Muskhelishvili’s [18] complex potential 

approach to solve the same problem. He applied his solution to the investigation of interface 

stresses in lap joints. Williams, in a later paper [19], extended his solution to wedges 

composed of two dissimilar isotropic materials. Bogy [20] solved the same problem using 

Mellin transforms and obtained similar results. The extension of the above problem to wedges 

composed of two dissimilar anisotropic materials was first conducted by Wang and Choi [21]. 

In their work they used the complex eigenfunction expansion of the Lekhnitskii [22] stress 

functions. Later they applied their solution to laminate free-edge problems (231 and composite 

lap joints [24]. Other investigators solved the same problem using slightly different ap- 

proaches. Delale (251 transformed Lekhnitskii stress functions into polar coordinates and used 

a polar eigenfunction expansion, in real variables, to solve the problem. Ting and Chou [26] 

and Bogy (271 used the Green and Zerna complex function representation to solve the same 

4 

problems. 4 

In the present study the solution method outlined by Lekhnitskii [22] and the specific 

eigenfunction expansion solution proposed by Wang and Choi [21] is employed. Inherent in 

this solution method is the need to determine a set of coefficients, one coefficient being as- 

sociated with each eigenfunction, from the boundary conditions. Among the many methods 

available by which the unknown coefficients may be determined, a collocation technique was 

chosen here. The method involves the use of n boundary conditions, of known magnitude, 
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matched along prescribed boundaries with the same boundary quantities written in terms of 

the unknown coefficients. This leads to a system of n simultaneous equations from which the 

n unknown coefficients can be determined. The above procedure is sometime referred to as 

the point-matching method. Since there is no rigorous proof for convergence of the collocation 

method, it is typically studied by increasing the number of terms in the assumed function and 

the number of boundary collocation points. To increase accuracy and decrease dependency 

in the manner in which the positions of the collocation points are chosen, it is common prac- 

tice to use more boundary collocation points than unknown coefficients (28,291. This approach 

is known as the overdetermined collocation procedure. Since it leads to an overdetermined 

set of equations by which the unknown coefficients are evaluated, the coefficients are deter- 

mined in a least-squares sense. Once it is clear that the number of terms in the assumed 

function and the number and location of the known boundary points have little influence on the 

numerical results, it is assumed that the procedure has converged. The converged functions 

are then assumed to be close to a true representation of the exact solution within this region. 

A number of investigators have made extensive use of the above described collocation 

procedure. Gross et a1 [12-161 used boundary collocation in the determination of K, for various 

edge crack specimen geometries. In their investigation the first coefficient (which is related 

to K,) of the Williams stress function, x ,  was determined by collocating boundary vales of x 
and &.- (n being the normal to the boundary) along prescribed boundaries. Carpenter [28] 

applied boundary collocation in the determination of various fracture parameters. The un- 

known coefficients of the truncated function expansion were evaluated from the collocation 

of all three stress components ( ox, 0, and ‘cy) obtained from finite-element analysis. In an- 

other paper [30] Carpenter investigated accuracy issues related to the boundary collocation 

of stresses and/or displacements. Wang and Choi [23] used collocation to study the laminate 

free-edge problem. 

dn 

Other procedures which involve the use of eigenfunction expansion of the stress function 

in a localized region include the reciprocal work contour integral (RWCI) method, and the use 

4 

4 

4 

4 

4 

4 

4 
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of special singular elements. The RWCl is based on Betti's theorem of elastic bodies. Two 

sets of forces (S, and S', ) and displacements (u, and u', ) of the same direction but not the 

same magnitude acting at selected points along the body boundary are in reciprocal equilib- 

rium. Use of the theorem provides a scheme by which the boundary value problem discussed 

previously may be solved. In addition, the RWCl leads to a path-independent procedure. The 

above technique have been used in the computation of K, and/or K,, by Carpenter [17] and 

Sinclair et al [31]. In the singular or hybrid element formulation, a special element is devel- 

oped which comprises a portion of the localized region where geometric and material dis- 

continuities occur. The displacements and stresses within the element boundary are 

governed by the exact elasticity solution. The surrounding standard elements of the mesh are 

then connected at n nodal points along the boundary of the special element. The coefficients 

of the truncated stress function are then determined so as to render continuity (or compat- 

ibility) of the nodal displacements at the special element's boundary in an exact or approxi- 

mate manner. There are numerous studies which have utilized the above concept. Some of 

the more relevant ones include work by Wang and Yuan [32] and Jones and Callinan [33]. 

Clearly, the issue here is determining the conditions on the boundary of the local region. 

In general, it is not important how the boundary conditions are obtained, as long as the in- 

formation is accurate. For complex geometries, such as the skin-stiffener cross-section, the 

only reasonable method to obtain boundary conditions is with finite-element analysis. Thus the 

method here will utilized a finite-element analysis of the cross-section to provide stress in- 

formation on the boundary of the localized region. Furthermore, the finite-element analysis of 

the cross-section itself will be coupled to a finite-element analysis of the entire plate. The total 

analysis will be of the form of a structure-substructure-local analysis. The remainder of t.his 

chapter will be devoted to the local analysis. The governing equations of elasticity, the 

eigenvalue expansion solution, and the application of the collocation procedure will be pre- 

sented. In addition, the accuracy and convergence of the method are discussed by application 

to specific problems. 
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2.2 Material model 4 

The analysis here is implemented on the laminate rather than a lamina level. That is, the 

skin and stiffener are treated as having homogeneous integrated material properties. The 

reason behind this is as follows: It is felt that the interaction between the skin and the stiffener 

are controlled more by the overall stiffnesses of the skin and the stiffener than by the stiffness 

of the individual lamina at the skin-stiffener interface. For this reason the integrated material 

properties are used in the present analysis. Furthermore, only symmetric balance laminates 

are considered. In obtaining integrated material properties, the lamina principal material co- 

ordinates, denoted as the 1-2-3 coordinates, correspond to the transverse, thickness, and fiber 

directions, respectively. The x-y-z coordinates correspond to directions transverse, normal, 

and colinear to the stiffener, respectively (see Figure 2). The fiber angle, c p ,  measures the 

angle between the 3 and z axis, a positive rotation corresponding to rotation of the fiber from 

the z axis toward the x axis. 

The well known laminate constitutive relations in the 1-2-3 system are written symbolically 

as, 

4 

4 

4 

-t 

E1 = s GI , [I1 

d 

E, and G, being the strain and stress vectors in the 1-2-3 system and S being the compliance 

matrix in the same system. The transformation of stress and strain from the 1-2-3 system to 

the x-y-z system leads to, 
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where T, and T, are the transformation matrices for stress and strain respectively. For a dis- 

cussion of these transformations see Appendix A. Substitution of eqs. 2 into eq. 1 leads to the 

lamina constitutive relations in the x-y-z system, namely; 

where, 

0 

0 

-+ - +  
EX = s 0, , 

and si, = si,. In inverted form eq. 3.a is written as, 

I) 

- + 
0, = c ZX 

C 3 . d  

C41 

The integrated laminate properties are obtained by smearing the individual lamina properties 

throughout the thickness of the laminate. This is achieved by defining an average stress 

through the laminate thickness, h, i.e., 

Substitution of eq. 4 into eq. 5 leads to the laminate constitutive relations: 

I) 
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Al2 A22 

A13 A23 A33 

0 0 O A 4 4 O  0 

0 0 0 O A 5 5 O  

0 0 0 0 O A s c  

where the overbar is dropped from the stresses for convenience. The laminate stiffness 

components Aij are given by, 

n being the number of laminae and y, and yk-, being defined as the through-the-thickness lo- 

cations of the laminae interfaces. In inverted form; 

c71 
+ 
tzX = [a] Gx . 

It should be noted that although each lamina is considered to be anisotropic in the x-y-z sys- 

tem, the laminate constitutive law is that of an orthotropic material, i.e., the smeared laminate 

properties are orthotropic. 

2.3 Elasticity Solution 

As mentioned at the outset, the analysis will be developed for the linear case and then 

extended to the geometrically nonlinear analysis case. What follows is the linear analysis 

development. 
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Consider an arbitrary semi-infinite corner composed of two dissimilar orthotropic materials 

bonded along y=O (or 8 = 0), as depicted in Figure 3. If the body in question obeys the fol- 

lowing restrictions: a) The dimension in the z direction is much larger than the cross-sectional 

dimensions; and b) The external loads on the lateral surface do not vary with z, it is possible 

that the stresses, and hence the strains, are independent of the z-coordinate. Such a condi- 

tion is referred to as a generalized plane deformation. The ends of the body may be subjected 

to axial force, P,, twist M,, and moments, both about the x and y axes (i.e., M, and My). If such 

end loads are present, the state of plane deformation will exist at some distance from the ends 

in a manner consistent with St. Vernant’s principle. Under the above conditions the stress 

equilibrium equations become, 

The st rai n-d is placement re tat ions are given by, 

C 9. e, fl 
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where the strains are a function of x and y only. The constitutive relations of eq. 7 for a 

homogenous orthotropic body under consideration can be written in full as, 

a?l a12 a13 

a12 a22 a23 

a13 a23 a33 

0 0 O a , O  0 

0 0 0 O a 5 5 0  

0 0 0 0 O a 6 6  

c101 

The general expressions for the displacement functions are obtained by a series of inte- 

grations and differentiations of eqs. 8, 9, and 10. The step-by-step details are given in [22]. 

In general, the constitutive relations are written in terms of the displacements using eqs. 9. 

The integration of three of these equations, (keeping in mind that 5, is independent of z) and 

the satisfaction of the remaining three equations leads to the displacement functions in the 

general form, 

u =  -- B1 a33 z2 - B,yz + U(x,y) + 0 2 z  - 0 3 y  + u, , 
2 C11.al 

[ l l . b l  v =  -- B2a33 z2 + B,xz + V(x,y) + % x  - o lz  + v, , 
2 

w = ( B, x + B, y + B3) aS3z + W(x,y) 

+ oqy - 02x  + w, 5 C1l.cl 

where Bi , ( i = 1,2,3,4), are arbitrary constants of integration, 0 ,  , ( i = 1,2,3) are rigid 

body rotations, and u, , v, and w, are rigid body translations. The unknown functions U(x,y), 

V(x,y) and W(x,y) must satisfy the following conditions: 
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- -  a” - $210, + P22oy + a23(B,x + B ~ Y  + B3) I [12.b] 
aY 

- + - -  au aV - B6f3txy ’ aY ax 
C12.cl 

- aw = P55%u + B4Y ’ [12.d] 
ax 

where Po are the reduced stiffness coefficients and are given by, 

e 

e 

, i,j = 1, 2,4, 5, 6 
ai3 aj3 

a33 
aij - - - 

Pij - 

The compatibility equations are satisfied identically for the above displacement field since it 

is derived from the strain-displacement relations. In addition it can be shown [22] that, 

The stresses which satisfy all the aforementioned assumptions can be derived from two stress 

functions, F(x,y) and Y(x,y) . If the stresses are written in terms of these functions as, 

e 

e 

a2F = - -  
* 7xy axay * 

a2F - a2F o x = - ,  o y - -  
dy2 ax2 

[ lS.a,b,cl 

[15.d,el 
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then the stress equilibrium eqs. 8.a through 8.c are satisfied identically. The equations gov- 

erning F(x,y) and Y(x,y) are obtained by substitution of the above stress relations into eqs. 

12.a through 12.e and the elimination of U, V, and W by differentiation. For an orthotropic 

material these equations become, 

a2Y + 8 5 5 7  a2y - - - 26, . 844 - 
ax2 

[16.b] 

The decoupling of the two equations is a distinct characteristic of orthotropic materials (i.e., 

the equations are not uncoupled for anisotropic material). The equation governing F is ho- 

mogeneous while the equation for Y involves a particular solution. The solution for F and the 

homogeneous equation for Y have the form [22], 

Y = Y ( x  + u y ) ,  [17.b] 

where p and u are parameters to be determined. For the local region near the vertex of the 

bimaterial corner the solutions for F(x,y) and Y(x,y) are approximated in [21] as, 

zk+ 2 

(h + 1) (h  + 2) 
F(2) = C ' 

z("+1) 
( 6  + 1) ' 

Y(Z) = D 

[18.a] 

[18.b] 

4 

4 

4 

4 

4 

where, 

z = x + J l y ,  

z = x + u y ,  

[ 19.a) 

[l9.b] 
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and C and D are arbitrary constants. The substitution of F(x,y) and Y (x,y) into eqs. 16.a and 

16.b leads to, 

The first equation is satisfied under the following conditions: 

a) p has one of four unique values given by the characteristic equation 

[20.b] 

Such roots do exist and they are always complex or imaginary (for detailed discussion see ref. 

22). Considering these four values of p , F(x,y) is given by, 

4 Z i+2  
2 1  ck (h  + 2)(h + 1) 

' F(e)(x,y) = 

b) p is arbitrary and, 

h = 0 , l  

c221 

This leads to 

F(a)(x,y) = bl x3 + b2x2y + b,xy 2 + b4y 3 

a 
+ b5x2 + b,xy + b,y2 . C231 

0 

0 

The superscripts (e) and (a) designates the eigenvalue expansion and auxiliary solutions, 

respectively. 

The second of eq. 20 is satisfied under the conditions: 

a) u has one of two unique values given by the characteristic equation, 
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This leads to, 

4 
[24.b] 

from which Y(x,y) becomes, 

b) u has an arbitrary value and, 

6 = 0 ,  

leading to, 

Y'(a)(x,y) = b, x + b9y . 

Finally the particular solution of eq 16.b is taken as, 

Y(p)(x,y) = bl,x2 + bll y2 . 

4 

4 

4 

In the above the Ck and D, are arbitrary complex constants and b,, i = I, ..., 9 are arbitrary real 

constants. The constants b,, and b,, are not completely arbitrary, namely 

4 

In addition, ?. and 6 are unknown parameters at this point. The total solution for the two stress 

functions is then written as the sum of the component solutions, Le., 

F(x,y) = F(e)(x,y) + F(a)(x,y) , C28.al 

20 

4 
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0 2.3.2 Expressions for the Stresses and Displacements 

The Cartesian components of stress are derived from eqs. 15.a through 15.e as, 

0 

a 

a 

e 

a 

where the auxiliary stresses are given by: 

o(a) X = 2b3x + 6b4y + 2b7 , 

,(a) Y = 6bqx + 2b2y + 2b5 , 

,(a) = - 2 b p ~  - 2b3y - b, , XY 

T ( ~ )  = - b8 - 2 bq,-,x , YZ 

bg + 2 b l l Y  . p) = 
xz 

[28.b] 
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It turns out that it is more convenient to impose conditions on the boundary of the localized 

region using the polar cylindrical stresses. Using the cylindrical coordinates r - 8 - z (Fig- 

ure 3), the stress components become, 

The general displacement functions u, v and w are given by eqs. 1l.a through 1l.c. The 

unknown functions U(x.y), V(x,y) and W(x,y) can now be determined by substitution of the 

4 

4 

4 

4 
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stresses eqs. 29.a through 29.e into eqs. 12.a through 12.e. Integration of of eqs. 12.a, 12.b and 

12.e leads to, 

+ da)(x,y) + u, , = CkPk (h  + 1) 
4 Zk+l  

UO(,y) = 
k = l  

[33.b] 

*"I 

+ W(")(x,y) + w, , C33.cl k 2 

k = l  
w(x*Y) = Dk rk (6 + 

C34.cl P44 
r k =  - -  uk ' 

and, 

U(') Ow) = Bll (b3 x + 6 b, Y + 2 b, ) + PI, ( 3 bl x + 2 b, y + 2 b,) 

+ % ( B l x + 2 B 2 y  + 2 B 3 ) x  + g(y) , 
2 

C35.al 

V") (x,Y) = P j z  (2 b, x + 3 b, y + 2 bT ) + 8 2 2  ( 6 b, X + 2 b, y + 2 b, ) 

+ & ( 2 B 1 x +  B 2 y  + 2Bt )  y + f(x) , [35.b] 
2 

W(a)(x,y) = - [ Pa (b, + 2 b lox )  + B ~ x ]  Y + h(x) . [35.c] 
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In addition, U and V must satisfy eqs. 12.c and W eq. 12.d. This leads to 

h(X) = p55 b , ~  + Wo . C35.fl 

The constants U, , V, and W, may be dropped since they represents rigid body motion, terms 

which were already included in the general formulation of the displacement functions (see eq. 

11). 

2.3.3 Application of the Boundary and Interface Conditions 

4 

2.3.3.a The Eigenvalue Solution 

4 
An examination of Figures 2 and 3 illustrate the conditions that must be applied to the sol- 

utions to have the solutions satisfy the conditions of the skin-stiffener interface problems. 

Specifically referring to Figure 3, the surface represented by 8 = a, and 8 = - n are gener- 

ally free of any tractions. If pressure-loaded panels are being considered, these surfaces could 

be exposed to the normal pressure traction. However, the magnitude of this traction relative 

to the magnitude of the stresses generated within the material is negligible and can be con- 

sidered zero. Hence, one condition on the analysis is that the surfaces at 8 = a, and 

8 = - n are traction free. In addition along the line 8 = 0, the stiffener and skin are joined. It 

is the intent of the joining to provide a condition of no slippage along this line, i.e., the dis- 

placements are continuous across the interface. Finally, from stress equilibrium arguments, 

the stresses ow, T, , and T ~ ,  are continuous across the interface. These conditions provide the 
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0 
necessary equations for determining some of the constants, and hence the characteristic of, 

F(Z) and 'u(Z). 

The conditions of traction-free boundaries are represented by (see Figure 3), 

o r ) ( r ,  a,) = @ ( r , q )  = TZe (1) (r,a,) = o , [36.a] 

oe2)(r, - R) = Tre (2) (r, - R) = Tze (2) (r, - Tt )  = o , [36.b] 

a 
where the superscripts 1 and 2 designate material 1 (flange) and material 2 (skin) respectively. 

For a perfect skin-to-flange bond the interface conditions along 8 = 0 require, 

0 C37.d 

[37.d] 

C37.el 

C37.fl 

Finally, at the ends of the cross-section (see Figure 3) the following integral conditions are 

required to be satisfied, 

J JA r,dxdy = 0 , J JA .ryZdxdy = 0 , [38.a,b] 
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It should be noted that as far as the above end conditions are concerned, it is possible to 

impose kinematic boundary conditions rather than force conditions, or it is possible to impose 

a mixture of the two. For example, rather than impose the area integral of 6, over the body’s 

ends to equal P,, it can be required that w = e,z, e, being an applied axial strain. 

The substitution of stresses, eqs. 31.a through 32.e, and displacements, eqs. 33.a through 

35.f, into the traction-free boundary conditions, eqs. 36.a and 36.b, and stress and displace- 

ment continuity conditions, eqs. 37.a through 37.f, places certain conditions on the stress 

functions, F(x,y) and Y(x,y). However, following the substitution of stresses and displacements 

into eqs. 36.a through 37.f and the application of variable separation to the resulting ex- 

pressions, it is evident that the conditions on the eigenvalue expansion part of the solution 

separate from the conditions on the auxiliary and particular parts of the solution. Therefore, 

the conditions on the eigenvalue expansion part of the solution (Le., F(.)(x,y) and @(x,y)) are 

treated separately from the conditions related to the particular and auxiliary part of the total 

solution (Le., F(’)(x,y), y‘’)(x,y) and @)(x,y) ). The imposition of traction-free and traction and 

displacement continuity conditions on F(*)(x,y) and yb0)(x,y) leads to the eigenvalue problem 

associated with 6 and h. Hence these parameters are determined uniquely for each problem. 

The conditions on F(”(x,y), w(”)(x,y), and $p)(x,y) for the specific skin-stiffener configuration are 

discussed later, while the conditions on the eigenvalue expansion are discussed next. 

The traction-free boundary conditions associated with W(x,y) are given by eqs. 36 as, 

and the traction and displacement continuity conditions by eqs. 37 as, 

W(’)(X,O) = W(*)(X,O) . 

Equations 39.a through 39.c lead to the following relations associated with yb’(x,y): 

4 

I 

4 

Q 
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a 

[40.d] 

where rk is defined by eq. 34.c. 

eigenvalue problem for 6. This set of equations can be written symbolically as, 

The above 4 simultaneous set of equations forms the 

For a nontrivial solution the values of 6 are given by, 

I Q(al, 6)  I = 0 . [41 .b] 

+ 4 

The eigenvector, 6 ,  consists of the two eigenvectors, 

2, respectively, i.e., 

and D(*), related to materials 1 and 

where both and consist of two constants each. 

If 6 is complex, solutions occur in complex conjugate pairs of the form, 

6 = y k i $  . 

However, in order that w(x,y) be finite at the origin, 

C41 . c l  

[4l.d] 
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- l < y .  

The eigenvalue problem for 6 is described in greater detail in Appendix 6. 

141 . e l  

The boundary conditions associated with F (x,y) are given by eqs. 36 as 

$)(r, a,) = T$)(r, all = o , C42.al 

ob2) (r, - n) = 7::) (r, - n) = o . [ 42. b] 

The traction and displacement continuity conditions associated with F(x,y) at the interface 

(6 = 0) are given by eqs. 37, 

oil) (r,O) = oh2)(r,o) , C43.al 

~# ( r ,o )  = #(r,o) , [43.b] 

U(’)(X,O) = u(2)(x,o) , C43.cl 

“(I) (x,O) = J2) (x,O) . [43.d] 

Equations 42.a through 43.d lead to the following 8 simultaneous equations associated with 

F(*)(x,y) : 

4 

k = l  
I; ~ r ) r h ( c o s  al + pk (1) sin ul)(‘h+2) = 0 t C44.al 

4 

k = l  
I; Cf)rh(&I cos u, - sin ul)( cos ul + pi’) sin u1)(‘+’) = 0 , C44.bl 

4 

4 

1 

4 

4 
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0 

C44.fl 

C44.gl 

[44.h] 

The above set of equations form the eigenvalue problem for h which is written symbolically 

as, 

For a nontrivial solution the values of h are given by, 

I A ( a l ,  h) I = 0 . [45.b] 

The vector e is composed of e(*) and associated with materials 1 and 2, respectively, 

C45.cl 

The eigenvectors ?I1) and consist of four constants each. If h is complex, solutions occur 

in complex conjugate pairs of the form 

h = q k i &  . [45.d] 

However, in order for the displacements u(x,y) and v(x,y) to stay finite at the origin, 

- l < l l .  C45.el 
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A detailed description of the eigenvalue problem for h is given in Appendix B. 

The eigenvalue problems associated with )i and 6 do not occur in a standard form and hence 

require special procedures in order to determine the eigenvalues. Two methods were used in 

the present investigation, both methods involve the computation of the characteristic ex- 

pressions (in closed-form or numerically) which is equal to the deteminant of the particular 

matrix of interest, i.e., Q of eq. 41.b or A of eq. 45.b. The first method, Muller [34,35], operates 

on a complex characteristic equation to find the roots. Once a root is found it is eliminated (or 

deflated) from the characteristic expression. This method is particularly well suited for com- 

plex root computation (see ref. 35). The second method is based on the secant technique for 

simultaneous nonlinear equations [36]. Here the real and imaginary parts of the determinant 

are treated as a set of two simultaneous equations, with the two unknowns being 9 and E, or 

y and p . 

Using the relations between the stresses and the stress functions, eqs. 15.a through 15.e, 

the eigenfunction expansion of the stresses can be written [23]. For the nth real eigenvalue 6, 

and An, these stresses take the form, 

[46.b] 

4 

1 

4 

4 

4 

I 
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Whereas, for the nth complex eigenvalues 6, and h, the stresses take the following form: 

0 

c 

* 

[47.d] 

where, i = 1,2 corresponding to material 1 (flange) and material 2 (skin). In addition, 

c, , c', , d, and d', are unknown real coefficients, whereas, c# and d#,  i = 1 ,2 ,  are known 

quantities of the normalized nth eigenvector associated with materials 1 and 2 respectively. 

The reader is referred to Appendix B for a detailed discussion of the appropriate eigenfunction 

representation for a real and complex eigenvalue. Next the application of the boundary and 

interface conditions on the auxiliary and particular portions of the solution is discussed. 

2.3.3.b The Remaining Part of the Solution 

In previous sections we saw that the imposition of traction-free boundary and interface 

conditions on the eigenvalue expansion part of the solution for F(x,y) and Y(x,y) led to the 

eigenvalue problems for h and 6, respectively. In this section these conditions are enforced 

on the other parts of these solutions (i.e. F(d (x,y) , and Y(P) (x,y)). The imposition of the 

boundary and interface conditions are implemented in the context of the skin-stiffener geom- 
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etry as discussed in section 2.3.2. The traction and displacement continuity conditions are 

given by eqs. 37. These conditions require that, 

u(’)(x,O) = li2)(X,O) , [48.a] 

V(l)(X,O) = J2)(X,O) , [48.b] 

r$)(x,O) = Tg)(X,O) , [48.c] 

rt:)(x,O) = @X.O) , [48.d] 

o?)(x,O) = oy(x,o) . [48.e] 

Here we chose to use the Cartesian components of stress. Considering eqs. 1l.a through 1l.c 

and 29.a through 30.e the above relations become: 

[49.b] 
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0 

0 

e 

e 

e 

0 

6 b(,')x + 2 bp) = 6 bi2)x + 2 bi2) . C49.fl 

Matching coefficients of the same power of x,y, and z we arrive at the following relations: 

i = 1,2,3 , C50.al (1) (1) = (2) (2) 
a33 Bi a33 I 

BY) = Bi2) , C50.bl 

oy) 2 ai (2) 9 i =  12 I C5o.cl 

where the superscripts 1 and 2 correspond to material 1 (flange) and material 2 (skin). Next 

the traction-free conditions are applied to the skin and flange free surfaces. These conditions 

for the skin, eq. 36.b, require that, 

Consideration of eqs. 29 through 32 in conjunction with the above conditions leads to the fol- 

lowing relations: 
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Equating coefficients of the same power of r yields 

b[2) = 0 , i = 1,2,5,6,8,10 

Finally, considering eq. 50.d together with eq. 53 leads to 

bll) = b[2) = 0 , i = 1,2,5,6,8,10 . 

[52.a] 

[52.b] 

C52.Cl 

C531 

C541 

Based on the above results, the auxiliary stress components, eqs. 30, reduce to 

OF) = 2b3x  + 6 b 4 y  + 2b7 , C55.al 

.(a) Y = 0 , [55.b] 

4 
K55.cl 

[55.d] 

Further information can be obtained by considering the traction-free conditions for the 

flange (material 1). These conditions are 

(1 1 06 (r,al) = 0 , [56.a] 

L56.b) 

il 

4 
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I) 

0 

The use of these conditions, together with eqs. 32 and 55, leads to the following relations: 

6 r n 2 [  rn bL1) + n bi’)] + 2 by)n2 = 0 , C57.al 

- 2rn[bL1)(2rn2 - n2) + 3bk’)rnnI - 2rnnbi’)  = 0 , [57.b] 

- n b r )  - 2b!,\)rn2 = 0 , C57.cl 

where, rn = cos(a,) , n = sin(a,) . Equating coefficients of the same power of r leads to 

bl‘) = 0 , i = 3,4,7,9,11 . C581 

Finally, considering eqs. 50.e through 50.9 in conjunction with eqs. 27.b, 35, 54 and 58 leads 

to 

0 

0 

I) 

c 

bL2) = 0 , [59.d] 

2. Analytical Method Development 35 



where, 
I 

Finally, considering all the relations derived in this section, the auxiliary stresses for the skin 

and stiffener are as follows: 

[61.b] 

[61 .c,d] 

I 

[6l.e,f] 

The stresses in material 1 (flange) and material 2 (skin) are given by eqs. 46.a through 47.e. 

These stresses are given in terms of the unknown coefficients cn,cfn, dn,df,, and 

B,, i = 1,2,3,4. For the specific skin-stiffener problem these coefficients are determined by a 

collocation procedure. This is discussed next. 
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0 2.4 Collocation Procedure 

e 

0 

a 

The eigenfunction expansion elasticity solution is valid for a semi-infinite domain. The 

particular boundary value problem associated with the skin-stiffener geometry is solved by 

assuming that the solution is valid in the finite domain represented by the localized flange 

termination region. Furthermore, the solution is assumed to be represented by a finite number 

of terms in the series. The unknown coefficients c, and c', in eqs. 46.a through 46.c and 47.a 

through 47.c are determined using the boundary collocation technique. Referring to 

Figure 2, the boundary of the local region is bounded by contour ABCDEFA. In the actual 

structure analysed, boundaries AF, AB, BC, and ED are traction free, whereas boundaries CD 

and EF are subjected to both normal, on, and tangential, z, tractions. Obviously in the nomen- 

clature of the problem, 0, = 0, and t, = tTy on CD and EF, and on = cry and t, = ty on BC and 

DE. By the development of the elasticity solution, the traction-free conditions on FA and AB 

are already satisfied. The collocation procedure is used to satisfy the traction-free conditions 

on boundaries BC and DE, and to match the normal and tangential tractions on boundaries 

CD and EF as determined by the global finite-element analysis. It should be noted that in the 

boundary collocation procedure, the normal and shear stresses, on and t, , along the contour 

BCDEF are written in terms of the unknown coefficients, c, and c', in a truncated eigenfunction 

expansion. These stresses are matched with the same stress components calculated by the 

finite-element analysis on the contour. Although it is possible to collocate other responses, 

such as three components of stress, the strains, the displacements, etc., it is felt that matching 

the normal and shear stresses on the boundary is the best choice. The main reason for this 

is the fact that enforcement of the force equilibrium conditions on the local region as a finite 

body involves only the normal and shear traction on the boundary of the body. 

For the specific problem here, the collocation at m points around boundary BCDEF leads 

to 2m simultaneous equations from which the 2n unknown coefficients are determined. The 
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use of more collocations points (i.e., m > n) leads to an overdetermined set of equations. 

Solution of these equations produces the 2n unknown coefficients c, and c', which satisfy all 

boundary conditions in a least-squares sense. If the original set of equations is represented 

by 9 

4 
-+ -+ 

S = A C .  [62.a] 

then the least squares solution for is [37], 

+ 
c = ( A ~ A ) -  'AT: . [62.b] 

In the above, A is a 2m x 2n known matrix (for which m > n ), s is a vector of length 2m 

consisting of a 2m known boundary stress quantities, and is a vector of length 2n consisting 

of 2n unknown coefficients, c, and c', , of the truncated eigenfunction. The elements of matrix 

A involve material properties and the coordinates of the collocation points. Once these coef- 

ficients are determined, the stresses in the localized region can be written. For a converged 

eigenfunction, these stresses are assumed to represent the true stress field in this region. In 

a later section convergence is studied by varying the number of terms (or eigenvalues) in the 

truncated function expansion and by varying the number of collocation points. 

2.5 Global Finite-Element Analysis 

To facilitate the application of the local elasticity solution to the skin-stiffener problem, a 

finite-element program was implemented which incorporated the generalized plane deforma- 

tion assumption. This finite-element formulation is consistent with the elasticity solution de- 

veloped earlier. The finite-element program was developed for two reasons. The primary 

reason was to provide boundary conditions for the eigenvalue expansion local elasticity sol- 

I 

1 
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ution. The second reason was to check the results of the eigenvalue expansion. As indicated 

in the introduction, the methodology was developed for geometrically linear problems, and 

then extended to geometrically nonlinear problems. Thus the finite-element program imple- 

mentation was very important in the first step of the solution strategy development. 

A body which conforms to the generalized plane deformation assumption may be analysed 

using a two-dimensional finite-element model. In this section a short description of the finite- 

element program (PE2D) is given. The PE2D program developed is based on the FEM2D 

finite-element program, [38], with the appropriate modifications to meet the need of the pres- 

ent investigation. For a more detailed discussion the reader is referred to Appendix C. 

The generalized plane deformation elasticity finite-element model is based on the dis- 

placement field given by eqs. 1l.a through 1l.c for homogeneous anisotropic bodies for which 

stresses do not vary along the generator (Le., the z axis). This displacement field can be 

written in vectorial form as, 

where; 

and, 

+ - + +  
u = u , + u  , 

V,(X,Y,Z) = - - B2a33z2 + B,xz , 2 
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Here the terms associated with the rigid body rotation and translation are omitted. The un- 

known functions U(x,y), V(x,y) and W(x,y), are approximated according to the finite-element 

method. Further, it may be shown that the unknown constants B i ,  (i = 1,2,3,4) are related 

to the body's kinematic end conditions, that is: 

In the stiffened skin structural context, e, and IC, are the axial extension and curvature in the 

z direction, and K, is the twist curvature about the z axis. The coefficient B, is related to the 

inplane twist about the y-axis and is of no consequence in the structure considered here and 

is therefore set to zero. The strain vector, E, is given by, 

4 

-+ + + 
& , = E  + c0 , 

where; 

E T -  - { -  au . a ; 0 ;  - m .  a. - a u + - } ,  av + 

ax ay dY I ax I ay ax 

(eo + K, Y) ; x ;  K x z  
2 

-- 
L 

Since only orthotropic media are being considered, the constitutive relation is as given before 

(see eq, 6.a) as 

-+ 
ox = 
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Considering eqs. 6.a and 65, it may be concluded that the problem of determining V(x,y) and 

U(x,y) decouples from the problem of determining W(x,y). In addition, since U,V and W are 

functions which depend on x and y alone, only a two-dimensional finite-element model is re- 

quired. The finite-element model is derived via the variation formulation in a standard manner. 

The conditions for this model consist of specified overall kinematic conditions (Le., e,, K,, and 

K, specified ) and force and/or kinematic conditions on the boundary in the x-y plane. It 

should be pointed out that because of the generalized plane deformation assumption, the 

specified overall kinematic conditions e,, K, and K, do notivary along the the z-axis of the 

body. 

2.6 Verification of the Analytical Model 

e 

e 

0 

a 

In this section attention is given to a results relevant to the verification of the linear analysis 

model. In addition, the fidelity of the local-global elasticity-finite-element analysis is demon- 

strated. By fidelity is meant the accurate representation of stresses by the elasticity solution 

within the localized region and the smooth transition to the global region. Whereas the con- 

vergence of the finite-element method has been discussed in [39], there is no rigorous proof 

for the convergence of the collocation method and its application to the present problem. For 

the problem here the accuracy of such a procedure will depend on a number of factors such 

as: a) the accuracy of the boundary conditions; b) the number of eigenvalues used in the 

eigenfunction expansion: and c) the number of collocation data points. In the following section 

these issues will be addressed. 

In order to study convergence and accuracy of the current model, the elasticity results are 

compared with results from a finite-element analysis in which the mesh was refined twice in 

the localized region. The results are compared for a particular problem. The use of a finite- 
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element analysis for comparison is due to the lack of another analysis of this particular 

problem. Two flange geometries are considered in this phase of the study, a 90" and a 45" 

flange termination angle, i.e., a, 90" and a, = 45" in Figures 2 and 3. Two angles were con- 

sidered at this stage so as to make conclusions regarding model verification more general. 

The flange and the skin are constructed of an 8-ply quasi-isotropic ( f 45/0/90), laminate, and 

an 8-ply orthotropic ( f 45/90,), laminate, respectively. Material properties are given in Ap- 

pendix D. The finite-element discretization for 90" and 45" flange angle skin-stiffener geom- 

etries are shown in Figures 4a and 5a, respectively, for what is referred to as the coarse mesh. 

Subsequent mesh refinements of the localized region are shown in Figures 4b,c and 5b,c. Due 

to the geometric and material symmetry, only one-half of the structure cross-section is mod- 

eled. The particular problem considered for the verification study is shown Figures 4.a and 5.a, 

namely the stiffened plate subjected to a pure bending moment M. The particular loading was 

chosen to illustrate the computational method because this loading produce peeling and 

shearing stresses at the skin-stiffener interface that are approximately the same order of 

magnitude. It should be mentioned that for this problem T~~ and T~ are identically zero. 

Therefore, attention is focused on ox, oy, and T ~ .  The exact nature of the skin-stiffener inter- 

face stresses near the flange terminus depends on the the value of q,, the real part of the first 

eigenvalue (see eq. 45.d). These stresses are unbounded if -1 c q,. 

In the collocation procedure, the normal, on, and tangential, T,, stresses are collocated 

along the closed contour ABCDEFA shown in Figures 4 and 5 by the heavy line. The stresses 

as computed by the finite-element analysis of the entire cross section are used to provide 

collocation data on the contour. In reality, collocation takes place only along boundaries BC, 

CD, DE, and EF, since the conditions of stress-free boundaries along A 6  and FA are satisfied 

exactly by the elasticity solution. Boundaries BC and DE were taken as stress-free faces of the 

skin and flange, respectively, whereas the stresses along the internal boundaries CD and EF 

are those determined by the finite-element analysis. These stresses on the boundary are 

calculated exactly within the finite-element context by postprocessing the finite-element dis- 

4 

I 

I 

4 

4 

d 

4 
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( a )  Coarse Mesh 

I 

( b )  Refined Mesh 

* E  D 

( c )  Fine Mesh 

Figure 4. Loading and Finite-Element Discretizations of Skin-Stiffener SO' Flange Termination 
Angle. 
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( a )  Coarse Mesh 

E 0 

(b) Ref ined  Mesh 

e D 

( c )  Fine Mesh 

Figure 5. Loading and Finite-Element Discretizations of Skin-Stiffener 4 5 O  Flange Termination 
Angle. 
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placement data. The collocation points are uniformly spaced along the contour. The bounda- 

ries CD and EF are placed at distance L from point A. This distance, shown in Figures 4 and 

5, was chosen according to the condition that cy and zy as computed by the finite-element 

analysis must be continuous across the skin-flange interface. That is, the stresses cry and T~ 

computed by the elements on either side of the interface in the skin and flange must yield the 

same value to within 5%. The theory of elasticity stipulates that these two components of 

stress are exactly continuous across the interface. This 5% condition assures that the skin- 

stiffener interlaminar stresses computed by the finite-element satisfy this condition to with a 

small tolerance and thus are accurate in the global region. Based on this 5% condition, it was 

determined that for the coarse mesh, L should be about 1.5 times the combined thickness of 

the skin and flange. This value of L was kept constant for all subsequent mesh refinements 

in order to eliminate variation in the results which may depend on L. In the subsequent fig- 

ures the stresses are plotted as a function of the normalized distance, Ti = X/t,, from the flange 

termination vertex (point A in Figures 4 and 5), where t, denotes the skin thickness. In all fig- 

ures, whenever ox stress data is presented, values computed both in the skin and in the flange 

are given. This dual computation is done because the stress component ox is discontinuous 

at the interface and will have different values in the skin and flange. However, if interface 

stress data for oy and zTy, as computed by the elasticity solution, are given, only one value is 

provided, since as stated above, these stress components are continuous across the interface. 

On the other hand, for the finite-element computation of these two stress components, both 

the stresses in the skin and the stresses in the flange are given. Plotting both the flange and 

skin finite-element components will illustrate the degree to which the continuity condition on 

these stresses is violated as the stress gradient becomes severe near the flange termination 

region. Finally, all stress components are normalized by - t s ,  where M is the applied mo- 

ment, '. is the distance from the neutral axis of the skin to the outer surface of the skin, and 

I is the moment of inertia of a section of skin of unit depth into the paper. This strength-of- 

materials view of normalizing the stresses is meant only as aid to not having to become in- 

volved in discussing the actual magnitude of the numbers. The normalized stresses are 

21  

2 
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denoted as is, EY, and TV Throughout the study, the stresses, and infact, distances, have 

been normalized in a manner relevant to the particular problem. 

Figures 6 through 11 show the variation of the skin-stiffener interlaminar stresses, a,, ay, 

and T, as a function of distance along the interface for the 90" and 45" flange termination an- 

gles. Both stresses determined by the finite-element analysis and those calculated using the 

truncated eigenfunctions, eqs. 46 and 47, are shown. The elasticity results shown in the figures 

were generated using 15 eigenvalues and 100 collocation points. The eigenvalues for both 

geometries are given in Appendix D. Each figure illustrates calculated values of a particular 

stress component for each of the three different meshes (Le., coarse, refined, and fine). The 

data point closest to the vertex for which finite-element stress data is plotted is at Z = 0.025. 

It should be noted that X goes from 0 to 3 because the skin and flange are of equal thickness, 

t, , and the length of the local region, L, is 1.5 times the combined thickness of the flange and 

skin, 2t,. The scale of the vertical axes was taken to account for the value of the normalized 

stress at Z = 0.025. 

A number of interesting observations can be made from these figures. In general, for both 

flange termination angles, at sufficient distances from the flange termination vertex, the 

finite-element and the elasticity solutions show excellent agreement for all three components 

of stress. The point at which this agreement can be categorized as being excellent moves 

closer and closer to the vertex with increases in the mesh refinement. As will be discussed 

shortly, there is very little difference between the elasticity solution resulting from collocating 

data from a coarse mesh and the elasticity solution resulting from collocating data from the 

fine mesh. In essence, for either flange termination angle, the elasticity solution does not 

change from one mesh to the next and hence the use of the coarse mesh is sufficient. What 

the figures are showing is that the elasticity solution coincides with the solution the finite- 

element analysis is appearing to converge to. It should also be noted that ay and fy computed 

by the finite-elements adjacent to the interface are discontinuous across the interface in some 

region near the vertex. The situation is worst for T~ than for ay. This discontinuity relates to 
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the inherent inaccuracy of the finite-element data near points of stress singularity. Although 

the region of inaccuracy shrinks with increases in mesh density near this point, the discrep- 

ancy between the two values of stress near the vertex is quite significant. This characteristic 

occurs for both the 90° and the 45" flange termination angles. 

To illustrate that the stresses as computed by the coarse mesh are sufficiently accurate to 

serve as boundary conditions for the elasticity solution, Figures 12 and 13 illustrate the vari- 

ation with i7 of the three stresses Cx, Cy, and yv, as generated by the elasticity solution for the 

two flange geometries. Each figure illustrates the three components of stress and each stress 

component is represented by three relations, each relation corresponding to the collocation 

of stress data from the different finite-element meshes. It is immediately evident from the fig- 

ures that for each stress component for both flange angles, the results of collocating stress 

data from the three different mesh densities coincide. This indicates that in order to obtain a 

good approximation of the state of stress in the localized region using the elasticity solution, 

only the coarse mesh need to be used. This is somewhat expected since at some distance 

away from the point of singularity the coarse mesh will yield a converged set of stresses. That 

is, the values of the stresses which were used for collocation on the boundaries CD and EF 

were approximately the same for all meshes. This supports the computation effectiveness of 

the current procedure, since only a coarse finite-element mesh is required to produce highly 

accurate stresses in the localized region. From the figures it is hard to distinguish between 

the magnitudes of the stresses at i7 = 0.025. Hence, the values of Ex,Ey  , and TY at these 

points, for the three meshes, are given in Table 1. It is observed that the percent difference 

in these values is negligible, again emphasizing the power of this methodology. 

At this point it is appropriate to depart from the discussion of the accuracy of the method 

and illustrate some of the physical results that can be addressed from the analysis. Table 1 

indicates that in terms of the peel stress, the 45" flange termination angle is better than the 

90" flange termination angle. At i7 = 0.025, the normalized peeling stress is 0.290, while for the 

45" angle, the peeling stress is 0.192, 33% less. On the other hand, the shear stress is about 

2. Analytical Method Development 53 



I 

x 
I t-" 

I b" 

2. A ~ l y t i u l  Mothod Dovobprmnt 

cn -w 

\ 
X 

54 



M 

e 

M DJ 7 0 -  
I 

0 

e 

r" 

\ 
, x  

0 

M 

0 
U) d- M DJ 7 0 -  

I 

I bh 

0 Ln 0 Ln 0 m 0 
LD cu 0 P Ln 

I b" 

" 
-+ 

\ 
X 

" 
-+ 

\ 
X 

2. Analytical Method Development 



P 
IC. 

lbh 

C 
3 
v) 

lb" 

( D a m  m m m  
000 . . .  
r r r  

P 
IC. 

0) m 
C a 
ii 
0 
v) 
d 

Ibh 

lb" 

4 

4 

2. Analytical Method Development 56 



e 

e 

e 

e 

e 

e 

the same for the two different flange geometries. On balance, the 45" angle would be better 

of the two. This coincides with intuition but the methodology developed here allows for the 

behavior of the two different angles to be quantified. 

Next, the issue of the convergence of the truncated eigenfunction expansion, as related to 

the number of eigenvalues and collocation data points, is addressed. Figures 14 and 15 illus- 

trate the variation with E of Cx, Cy, and TXv as computed by the truncated stress functions (eqs. 

46 and 47) for 90° and 45" flange termination angles. The multiple data on each plot corre- 

spond to stress calculations produced by 5, 10 and 15 eigenvalues in the truncated 

eigenfunctions. In these computations 100 collocation points from the coarse mesh were used. 

As can be seen in the figures, convergence of the truncated stress functions for Zy and TY 

occurs between 10 and 15 eigenvalues. That is, the stress computation for 15 eigenvalues is 

bracketed between the computation for 5 eigenvalues and the computation for 10 eigenvalues. 

On the other hand, this convergence is not completely evident for 0.. There seems to be a 

slight increase in this stress value with an increasing number of eigenvalues. There does not 

seem to be a bracketing effect with increases in the number of eigenvalues, as was observed 

for the other stress components. However, on a percentage basis, the increase of stress is 

minimal. Hence it is felt that the use of between 10 to 15 eigenvalues leads to convergence 

of the eigenfunctions in eqs. 46 and 47. Figures 16 and 17 illustrate data for the same stress 

components in which the number of collocation points were varied. In particular, the number 

of collocation points was doubled. For these computations 15 eigenvalues and a coarse mesh 

were used in the stress computations. From Figures 16 and 17 it is apparent that the number 

of collocation points has a minimal (or no) effect. This is true provided that the number of 

collocation points are approximately 3 to 4 times larger than the number of coefficients in the 

truncated eigenfunctions. It should be noted that the number of collocation points for the 90" 

flange termination angle, Figure 16, is different than the number of collocation points for the 

45" flange geometry, Figure 17, because of slight differences in geometry. 
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Next a point of computational importance is addressed. In the course of the investigation 

it has been found that the stresses on contour ABCDEFA, more specifically the stresses on 

CD and EF, as computed by the finite-element analysis, are practically independent of the 

flange termination angle. Thus the stress data from the finite-element analysis of the cross- 

section with a flange termination angle of 90" can be used as collocation data for the elasticity 

analysis of a 450 flange termination angle, or any other angle for that matter. Hence, the 

finite-element analysis need to be done only once. This reduces the computation task, since 

the one finite-element analysis can be used to produce multiple local elasticity solutions for 

different flange termination angles. Figure 18 shows results of two elasticity solutions of the 

90" flange termination angle. In one solution the finite-element data from the analysis of a 

cross-section with a 90" termination angle and the eigenvalue expansion solution for the 90" 

flange angle are used. In the other solution the finite-element data from the analysis of the 

cross-section with a 45" termination angle and the eigenvalue expansion for the 900 angle are 

used. Of course the former solution is the one that is correct but it is clear from the figure that 

the latter solution is essentially identical to the former. Figure 19 shows the solution for 450 

flange termination angle solved using both 90" and 450 finite-element analyses as the bases 

for the collocation procedure. Again it is obvious there is very little difference in the results, 

indicating that the eigenvalues and eigenvectors play a very important rule in determining the 

characteristic of the stress distribution in the local region. 

It is appropriate at this time to address an issue that is often raised in conjunction with the 

study of interface stresses. The point is raised now because it will put into context the results 

to be presented in the remainder of this document. The analysis developed to this point has 

assumed that the skin and the flange are joined along a line that represents a perfect bond 

with zero thickness. Depending on the fabrication process, the bond line may have nonzero 

thickness and the material within this thickness may have properties significantly different 

than either the skin or the flange materials. At issue is the fact that the interface between the 

flange and the skin may be an adhesive with nonzero thickness. Of concern is the influence 

1 
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of the adhesive layer on the peeling and shearing stresses. In what follows, the interface 
0 

stresses are computed using finite-element analyses for two adhesive layer thicknesses. 

These results are compared to results for the case for which a zero bond line thickness is 

assumed. The data presented provide important information as to whether the elasticity sol- 
c 

ution is conservative or nonconservative in the calculation of skin-stiffener interface stresses 

when an adhesive layer is present. One may postulate that an elasticity solution in which the 

0 

e 

e 

e 

two adherents are assumed to have a perfect bond of zero thickness will lead to noncon- 

servative stress calculations. This is a consequence of the fact that the assumption of perfect 

bond reduces the flexibility of the interface, as compared to if the adhesive layer was present. 

Hence it is important to know how large an error is introduced as a consequence of the as- 

sumption made. To determine this effect, the same skin-stiffener geometry and loading con- 

ditions which are shown in Figure 4 are analysed. Two adhesive layer thicknesses are 

evaluated, h- = 0.05 and = 0.10. The thicker adhesive layer represents the upper limit of 

the bond line thickness. The thinner layer thickness is the nominal bond line thickness. The 

results from these analyses are compared to stress data for - = 0 layer thickness as com- 

puted by the finite-element program and as computed by the local elasticity analysis. The 

t, t, 

h 
t, 

adhesive material properties are given in Appendix D. Mesh refinement in the localized region 

corresponds to the fine mesh of Figure 4.c. A coarser mesh is used outside the local region. 

However, element size in the coarse region is such that the adhesive elements‘ aspect ratio 

does not exceed 1:4. Figure 20 shows the character of the interface peeling stress cy in the 

localized region. Figure 21 displays similar information for the interface shearing stress ‘ty 

Each figure consists of two plots, one illustrating the stresses at the interface as computed 

by elements in the flange, and the other illustrating the same stresses but evaluated by ele- 

ments in the skin. The finite-element stress data is denoted by symbols, whereas, the local 

elasticity results are indicated as solid curves. As in previous figures the stresses and dis- 

tance along the interface have been normalized. 
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In general, the results of Figure 20 suggest that there is a slight increase in the magnitude 

of the peeling stress, cry , between j?. = 0.025 to Z = 1 as the bond line thickness increases. 

However, the increase relative to the zero bond line results is quite small, something on the 

order of less than 5%. In general, the results of Figure 20 indicate that even in the present 

of adhesive layer, the peel stresses tend to become unbounded as the flange terminus is ap- 

proached. The unbounded nature of the peel stress with an adhesive is in qualitative agree- 

ment with the finding of [9]. The conclusions regarding the behavior of the shear stress are 

not so clear. As has been shown in Figures 6 and 11, the elasticity solution and the finite- 

element results for zero thickness bond line are in disagreement near the flange termination 

point. Further, the finite-element shear stress results in the skin and in the flange at the 

interface near the flange terminus are markedly different from each other. This essentially 

indicates that the finite-element solution is not converged at this location. However, with the 

adhesive present, the finite-element stress calculation for the shear stress in the flange are 

not that different than the calculation for shear stress in the skin. Has the finite-element sol- 

ution converged and the shear stress is indeed finite and may be less than the zero bond line 

case ?. Reference [9] indicates that the shear stress is also quite large near the flange ter- 

mination point. This finding, coupled with what appears to be the poor shear response of the 

6-node finite-element for this class of problems would lead to the conclusion that the shear 

stresses are unbounded near the flange termination point, even in the present of an adhesive 

layer. Hence, it is felt that the peeling and shearing stresses computed by the elasticity sol- 

ution for the case of zero bond line thickness are representative of the behavior, even in the 

present of nonzero bond line thickness. 

Attention is now focused on extending the methodology to include geometric nonlinearities, 

and to study the influence of stiffener geometry and material properties on interface stresses. 

4 

4 

1 
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3. Application of the Methodology to Stiffened 

Composite Plates 

3.1 Preliminary Remarks 

If the cross-section being studied is actually part of a plate which is subjected to a particular 

loading and boundary conditions, the cross-section experiences a loading more complicated 

than the simple bending moment used in studying accuracy and convergence. In addition, the 

loading is most certainly of such a magnitude that the plate experiences geometrically non- 

linear effects. Thus, to extend the present work to the analysis of stiffened plates with realistic 

loading and boundary conditions, the cross-section geometry being consider is assumed to 

be part of a pressure-loaded plate which is clamped on all four sides. The particular plate 

geometry and boundary condition were chosen since they represent the configuration studied 

experimentally in [ lo]  and, as shown in Figure 22, the situation simulates a unit cell of stiffened 

aircraft skin structure. Although in actual aircraft structures the skin is generally subjected to 

both transverse pressure and inplane loading, only a pressure load is investigated. In that 
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context it should be mentioned that the methodology can be extended to include more general 

loadings and stiffener geometries. In the present investigation a coordinate system different 

than the one commonly use by plate theory was chosen (see Figure 22). This was done in 

order to keep the coordinate system consistence with the elasticity solution developed earlier. 

Although, this may lead to some confusion, it was felt that the plate analysis (herein called the 

structural analysis) had only sideline importance in the present development, the elasticity 

analysis being the principal analysis. 

The analysis procedure to be discussed consists of three steps. First, a two-dimensional 

structural level analysis of the entire stiffened composite plate is conducted. Next, a typical 

cross-section in the central region of the stiffened plate structure is isolated and a three- 

dimensional finite-element analysis of the cross-section is performed. The boundary condi- 

tions for this three-dimensional model are provided by the structural level analysis. Hereafter, 

the finite-element analysis of the stiffener-skin cross-section is alluded to as the substructural 

analysis. In the previous chapter this type of analysis was referred to as global analysis. Here, 

it is felt that since the stiffened-skin cross-sectional analysis is a subset of the structural level 

analysis, this terminology is more appropriate. Finally, the stresses from the substructural 

analysis are coupled with boundary collocation scheme to produce a rigorous elasticity sol- 

ution in the flange termination region, i.e., the localized region. The scheme thus may be 

termed as a structure-substructure-local analysis. Both the structural and substructural ana- 

lyses were conducted using the commercially available Engineering Analysis Language (EAL) 

finite-element code [40]. Before proceeding to discuss the structure-substructure-local analy- 

sis model, the extension of the elasticity solution to account for geometric nonlinearities is 

considered . 
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3.2 Geometrically Nonlinear Elasticity Analysis 

Since stiffened composite aircraft skin structures are generally designed to operate in the 

postbuckling or geometrically nonlinear range, this characteristic must be considered. De- 

spite the geometrically nonlinear deformations, it can be assumed that the strains are small 

and hence linear elastic material response will prevail. In addition, for a thin flexible structure, 

such as a stiffened composite plate, it is customary to assume that the inplane deformations, 

u and w, are much smaller than the plate dimensions in x and z directions, whereas, the out- 

of-plane deformation, v, can be of the same order of magnitude as the plate thickness: The 

above assumptions lead to neglecting all nonlinear terms in the strain-displacement relations 

which contain the derivatives of and w (" indicates inplane displacement of the plate 

midsurface). In addition, if it is assumed that a line perpendicular to the midsurface remains 

perpendicular and unstrained after deformation, then one arrives at the well-known Von 

Karman plate kinematic relations. 

The extension of the geometrically linear elasticity solution previously developed to the 

geometrically nonlinear range relies on (for the problem studied here) the assumption of small 

strains and small to moderate angular rotations, ox and a,, about the x and z axes. In addition, 

it is required that these rotations are independent of spatial location within the localized re- 

gion. Under these assumptions the stress equilibrium equations written in the deformed body 

coordinates are satisfied by the stress function relations, eqs. 15.a through 15.c, written in the 

same coordinate systems. To facilitate our understanding as to why such a statement can be 

made, a brief discussion of the general nonlinear stress equilibrium conditions follows. For a 

detailed discussion of the subject the reader is referred to Novozhilov, [41]. 

In the geometrically nonlinear range the equilibrium equations are derived by summing 

forces on an infinitesimal element in the deformed state. For the purposes of the analytical 

4 

1 

I 

1 
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development, it is sufficient to concentrate on the geometric representation of a body under- 

going small strains and small to moderate rotations. In the case of small straining, the 

infinitesimal element shape in the deformed state may be approximated by its original 

undeformed shape. In addition, the x-y-z coordinate system will be transformed into a rec- 

tangular Cartesian system, x-y-z, in the deformed body, as shown by Figure 23. 
I-- 

In the skin-stiffener nonlinear analysis context, the following assumptions are made: 

(a) The condition of small strains exists in the localized region and linear elastic material 

response is obeyed. 

(b) The condition of small to moderate rotations exists and these rotations are inde- 

pendent of spatial location within the localized region. 

Under the above considerations, the localized skin-stiffener region in its original shape 

undergoes rigid-body rotations as shown in exaggerated form in Figure 23.a. Since x-y-z, is a 

rectangular Cartesian system, the equilibrium equations can be written in the deformed state 

by adding tildes over x,y and z. Hence, the elasticity solution developed previously is assumed 

to be valid, provided that it is applied in the deformed body state and that the angular rotations 

are spatially uniform within the region of its application. The procedure outlined previously 

for the determination of the coefficients, c, and c’, in the eigenfunction expansion, eqs. 46 and 

47, is then valid provided it is performed in the deformed body state. 

--- 

3.3 Structural-Substructural-Local Analysis Procedure. 

The structure-substructure-local analysis procedure is depicted by Figure 24. First, a 

structural analysis of the entire blade-stiffened plate (Figure 24.a) is conducted using plate 

elements. Next, a substructural analysis of an isolated region, where skin-stiffener interface 
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Figure 23. Nonllnear Skin-Stiffener Analysis Geometry. 
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stresses are expected to be high, is performed (Figure 24.b). Finally, a local elasticity analysis 

of the flange termination region is performed (Figure 24.c). 

The structural finite-element model uses plane stress membrane and bending plate ele- 

ments. The substructure finite-element model employs three-dimensional brick elements. All 

of these elements are available in EAL. Using these elements, both linear and nonlinear an- 

alyses can be performed. The nonlinear solution algorithm used by EAL employes the full or 

the modified Newton-Raphson method. In the present investigation the full Newton method 

was used. Most of the elements in the EAL library (and all of the ones used here) are based 

on Pian's [42] hybrid element formulation derived according to the minimum complementary 

energy principle. In general terms, this formulation assumes a stress field (generally in 

polynomial form) which satisfies stress equilibrium in the element interior. The displacements 

along the element boundaries are expressed in terms of compatible generalized nodal dis- 

placements, in a manner identical to the one used in displacement formulation finite-element 

development. Next, using the principle of minimum complimentary energy, the element 

stiffness matrix can be constructed. For a detailed discussion of this method see [42] and 

Appendix C. In the next sections each step of the analysis procedure is discussed. 

I 

4 

4 

3.3.7 Structural Analysis 

3.3.1 .a Details of Finite-Element Analysis 

The stiffened plate is discretized using 4-node plate elements, referred to as the E43 ele- 

ment in EAL, as shown in Figure 25. Each element of this type has 5 degrees of freedom 

na me1 y; 
1 
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To verify of the structural analysis procedure and the accuracy of the EAL finite-element 

model, a stiffened plate configuration which was tested and analysed in ( lo ]  was reanalyzed 

using EAL, E43 elements. In [ lo]  the STAGS finite-element model was used in the analysis of 

the plate. The stiffened-plate finite-element discretization used was similar to the one shown 

in Figure 25. The comparison between the EAL analysis, the STAGS analysis, and the exper- 

imental data is shown in Figure 26. In the figure the out-of-plane deflection, at the center-of- 

plate and in the skin away from the center of the plate, are plotted as a function of the applied 

pressure. Both the results from STAGS and from EAL are based on geometrically nonlinear 

analyses. The figure clearly show that the two finite-element methods give nearly identical 

results. For an explanation of the difference between the experimental data and the analytical 

results, the reader is referred to [lo]. Results like the one displayed in Figure 26 provide 

confidence in the accuracy of the EAL structural analysis model used in the present investi- 

gation. 

a 

3.3.1 .b Details of Structural Analysis 

8 

a 

To be consistent with the constitutive law used in the elasticity solution, in the structural 

level analysis all extension and bending-twist coupling terms are set to zero. These terms 

include B,, , B,, , D,, , and DZ8. For symmetric balanced laminates, such as the ones considered 

here, B,, = B,, = 0 for both the skin and the flange. On the other hand, neither D,, nor D,, 

are zero. However, they tend to be small relative to D,,, D,,, D,,, and D,, . Given these material 

restrictions, and the geometry, and loading conditions considered, it was only necessary to 

analyse one-quarter of the plate using the two planes of symmetry (Le., [x,y,O] and [O,y,z]). 

Before proceeding, an important point must be raised. The elasticity analysis of the flange 

termination region relies on the assumption that the stresses do not vary with the z coordi- 
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nate, Le., the stiffener direction. The stresses in a stiffened plate which is clamped on all four 

sides clearly vary with the z coordinate, particular near the ends of the stiffener. However, 

toward the center of the plate there will be a region within which the stresses are quite uni- 

form with respect to the z coordinate. It is in this region that the elasticity analysis is valid. 

Consequently, it is in this region that the structural analysis will be refined to a substructural 

analysis, and the substructural analysis used to provide boundary data for the collocation 

scheme. It is fortunate that in many instances skin-stiffener separation occurs near the center 

part of the plate because the analysis methodology discussed here is indeed valid in this re- 

gion. 

Since attention will be focused on the central region of the plate, it is of interest to study 

the convergence of the structural level finite-element analysis in this area. Figure 27 illus- 

trates a coarse mesh and a mesh which was refined twice in the central region. These two 

meshes and one which was refined once, not shown in the figure, were used to study plate 

response, and in particular, convergence. In the mesh refinement, triangular elements were 

used as transition elements. The triangular element, E33, and the regular element, E43, are 

discussed in Appendix C. 

Figure 28 shows the convergence characteristics of the three components of displacement 

along x at z=b/3. The distance of z=b/3 is the distance from z=O to the second nodal line 

along x and b is the flange half-width. The second nodal line was selected over the first one 

since along the first nodal line, at z=O, both w and p, are zero and therefore cannot be used 

for convergence study. The displacements studied are the displacements at the skin 

midsurface. The figure shows the displacements for the three meshes used to study conver- 

gence, Le., coarse , refined, and fine meshes. It is clear that the results for the refined and 

the fine meshes coincide, indicating convergence of the response along the line z=b/3. 

Figure 29 shows similar results for components of rotation, p, and p, along the line z=b/3 

Although the figures present displacements and rotations data at z = b/3, similar convergence 

characteristics were observed for the entire mesh refinement region. 
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(a) Coarse Mesh 

n CLAMPED 

(b) Fine Mesh 

Figure 27. 114 Symmetry Stiffened Plate Diacretization and Mesh Refinement.. 
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One of the unique characteristics of stiffened composite plates is revealed in Figure 28. This 

is the phenomenon of pillowing. Pillowing is the term used to describe the fact that the skin 

at x/b Z 3  deflects out-of-plane more than the center-of-plate, x/b =O. This pillowing literally 

pulls the skin away from the flange. Pillowing is the reason the displacement of the skin in 

Figure 26 is greater than the displacement of the center-of-plate. 

3.3.2 Substructural Analysis 

The substructural analysis is conducted using 8-node hexahedrons and 6-node 

pentahedrons, solid elements which are available in EAL. Each node of these elements has 3 

degrees of freedom, namely u, v, and w. Both elements accept fully anisotropic material 

constitutive behavior. To be consistent with the elasticity solution developed, the material 

compliance matrix is taken to be orthotropic. A brief description of the two solid elements 

used is given in Appendix C. 

The substructural analysis is conducted on isolated area in the structure. As mentioned 

above, attention is given to the plate center location. The region for which the substructural 

analysis is carried out is indicated by the area outlined by the heavy line in Figure 30. In ad- 

dition, Figure 30 also shows schematic discretization of the substructure model. The model 

includes both sides of the symmetry plane and has a width of 4b/3. One side of the model 

coincides with nodal lines in the structure model at z=2b/3. The model is discretized with 8 

elements in the z direction and the mesh refinement of the flange-skin cross-section corre- 

sponds to the coarse mesh used in section 2.6. As was done in the structural analysis, the 

web is modelled with plate elements except that now the web is attached to the top of the 

flange. The following displacements boundary conditions are imposed on the substructure 

model: 
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( a )  Structure Model. 

( b )  Substructure Model. 
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Figure 30. Structural to Substructural Analysis Procedure and Schematic of Substructure 
Discretization. 
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(x9y,-2b/3) 
(KY, + 

(3b,y,z) 

(0,Y 92) 

(XY 90) 

Specified Displacements 

u, v, and w 
u, v, and w 
u, v, and w 
u = o  

w = o  

0 

where u, v, and w are determined from the structural analysis displacement and rotation data 

by applying Kirchhoff assumptions. That is: 

[68.a] 

[68.b] 

[68.c] 

Here, u,, v,, and w, are the displacements of the skin midsurface as determined from the 

structural level analysis. On the -2 boundary the displacement boundary conditions are eval- 

uated using the oddness and evenness of the displacement and rotation functions. These 

conditions are 
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The boundary conditions determined by using eq. 68.b lead to unnatural through the thickness 

constraints at the boundaries of the substructural region. This restriction may be alleviated 

by specifying linear variation of v through the thickness, as was done in [44]. In the present 

study the local elasticity analysis was performed along the substructure symmetry plane 

[x,y,O]. Consequently, it was felt that the effect of through-the-thickness constraints at the 

boundaries, (z = f 2b/3), would have little if any effect on the state of stresses of the location 

z=O. In addition to the displacement boundary conditions of eqs. 68, the substructure model 

was subjected to transverse pressure. Here the pressure load was applied in the form of a 

vacuum to the skin side. This was done in order to simulate the loading conditions used in 

[ IO] .  

In a linear analysis, a set of displacements corresponding to a particular pressure level, 

as compute by the structural analysis, is imposed on the substructure model. The system of 

equations representing the state of the body is then solved once. Solution for any other 

pressure level may be obtained by simple ratio of the previous results. In a nonlinear analysis, 

a more complicated procedure is required. Specifically, the response at each pressure level 

is the result of a series of finite-element calculation. First, a converged set of displacements 

and rotations for a particular pressure level, say p1 , is obtained using the structural analysis. 

This set of displacements and rotations are then used to compute the boundary conditions 

discussed above for the substructure model. Next, using these conditions, the set of equations 

representing the substructure is solved iteratively until convergence is reached for that pres- 

sure level. The converged solution represents the solution for one pressure level, pl. The 

process must be repeated if another, say a higher, pressure level is required. Using the con- 

verged solution, the stresses can be computed at any point throughout the interior of the 

substructure using the stress polynomials which are part of the EAL finite-element formulation 

(see Appendix C). These stresses are then used in the collocation scheme. 

Before proceeding to discuss the local analysis procedure, it is instructive to compare the 

response predicted by the substructural analysis with the response of the structural analysis. 
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Probably the single most significant kinematic variable in the analysis of flexible stiffened 

plate structures is their out-of-plane deformation. Consequently, this variable was chosen as 

a measure of comparison between the two models. The results of such comparison are shown 

in Figure 31. In this figure the out-of-plane displacement v is plotted as a function x for both 

the structure and substructure models. The results correspond to nonlinear analysis using 10 

psi applied pressure. One portion of the figure corresponds to v(x,O) and the other portion to 

v(x,b/3), z= b/3 being half the distance between the symmetry plane and the boundary in the 

substructure model. The substructure extends to 3b in the x direction, as can be seen from the 

point of termination of the dashed line. The figure demonstrates the excellent agreement be- 

tween the two models. However, as would be expected, the substructure model appears to 

be slightly stiffer. One may improve on the agreement between the two models by adding 

additional elements in the z direction to the substructure model. This, off course, would in- 

crease the cost per run. The error observed with the present results are on the order of 1 to 

2 O h  and do not justify the increase in cost. 

3.3.3 Application of the Local Elasticity Analysis 

In practice there is only one difference between the geometrically linear and nonlinear local 

elasticity analyses. The difference between the two is that in the nonlinear analysis the 

collocation procedure must be performed in the deformed body configuration. In practice, this 

presents no problems. It should be pointed out that should collocation of displacements or a 

mixture of displacements and stresses been used, extension to the nonlinear case would not 

have been as simple. Given the discussion of section 3.2, the only requirement on the local 

geometrically nonlinear elasticity analysis which is different from the linear analysis is that 

on and 7,  must be computed in the deformed local region configuration. Having computed the 

normal and tangential stresses along boundaries CD and EF (see Figure 23), the collocation 
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procedure outlined in section 2.4 has the same format for the two types of analyses. For the 

loading conditions considered in the study, boundary DE of the local region is subjected to 

applied pressure, p. As stated earlier, this pressure is negligible, in the collocation procedure 

context, as compared to the stresses generated by the pressure (i-e., on boundaries CD and 

EF). 

Other restrictions in the present analysis which are a result of the assumptions used in the 

the elasticity solution relate to the uniformity of response in the local region. These re- 

strictions are: 

(a) The stresses do not vary with z. 

(b) e,, K, , and K, are uniform throughout the local region. 

For the skin-stiffener geometry, the loading conditions, and the material constitutive law used, 

these conditions are met to within a 10 YO (or less) variation. With a 10 YO variation, the re- 

strictions imposed by the elasticity solution are not perfectly satisfied. However, they are suf- 

ficiently close from an engineering view point. 

To utilized the convergence information established in section 2.6, the stress calculations in 

the local region using EAL solid elements are compared to the stress calculations using the 

PE2D finite-element. It was hoped that on the boundary of the local region, the EAL solid ele- 

ments would yield the same stresses as the PE2D elements. If the data compared favorably, 

then the convergence studies of Chapter 2, using PEPD, could be used to imply convergence 

of the EAL analysis. To facilitate this comparison, a case which was studied previously using 

PE2D was used. This is the case of bending illustrated in Figure 4. The results of one such 

comparison is shown in Figure 32. The comparison is for the coarse mesh Figure 4.a. As be- 

fore, the interface stresses are normalized by 2. Both the stresses in the skin and flange, 

at the interface, as computed by EAL and PEPD are shown. Further, the elasticity solution as 

derived from the collocation of stress data generated by EAL and generated by PE2D analyses 

are also plotted. Apparent from the figure is that the two approaches produce identical 

elasticity solutions. On the other hand, there are some differences with regard to the finite- 
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element computed stresses within the localized region. This is particularly apparent for zy . 

However, this is not surprising, since the EAL solid elements have constant shear stress 

through the element cross-section. Hence such an element will have a more difficulty con- 

forming to the large stress gradients in the localized region. Nevertheless, PE2D and EAL 

produce almost identical stresses along the local region boundaries at x/t, = f 3. This in turn 

produces the perfect agreement between the two elasticity solutions. Based on the data pre- 

sented in section 2.6 and comparisons like the one shown in Figure 32, it was concluded that 

the use of EAL leads to an accurate local elasticity analysis. 

In the last part of this chapter the local analysis of the skin-stiffener interface in the pressure 

loaded plate is presented. This presentation completes the analysis procedure depicted in 

Figure 24, starting with the structural analysis of Figure 27, proceeding to the substructural 

analysis of Figure 30, and ending with results similar to Figure 32, but for a pressure loaded 

plate. In the following figures, the stresses are normalized by the applied pressure, p, and 

distance have been normalized by the flange half-width, b, or by the skin thickness, t,. 

The stresses along the entire skin-flange interface are shown in Figure 33. Figure 34 fo- 

cuses on the distribution of these same stress components in the local flange termination re- 

gion. It should be kept in mind that the loading is actually a 10 psi vacuum applied to the side 

of the plate without the stiffener. Thus the plate out-of-plane deformation is in the -v direction 

(see Figure 24). The flange termination angle is 90”. Figure 33 indicates that along the entire 

interface, on either side, the stress 6, is positive. This despite the fact that the interface is 

on the top side of the skin and, in the sense of a linear analysis, subjected to compressive 

bending stresses. The positive ox is attributed to the tensile membrane force that develops 

as a result of the large out-of-plane deformations of the plate. 

The peeling, o,, is nonzero at the flange termination point, the local region, and under the 

stiffener web. Since the stiffener web has much more resistance to out-of-plane deformation, 

the skin has a tendency to pull away at this locality as well as in the flange termination region. 
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The shear stress T~ is nonzero along the entire skin-flange interface, but it is constant in 

magnitude away from the flange termination point, and away from the web. 

This concludes the discussion as related to the analytical developments and their applica- 

tion to actual stiffened-skin composite structures. In the next chapter the structure- 

substructure-local analysis procedure will be used to investigate the influence of geometric 

nonlinearities on skin-stiffener interface stresses. Following that is study of the influence of 

stiffener parameters on the state of interface a 
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With the methodology for computing skin-stiffener interface stresses verified as regards 

convergence and fidelity, the influence of various stiffener parameters on the skin-stiffener 

interface stresses can be evaluated. In addition, the importance of geometric nonlinearities 

can be evaluated, and an assessment of the error incurred by not including these effects can 

be made. To that end, this chapter begins by evaluating the influence of geometric nonline- 

arities on the interface stresses. This is followed by the determination of the effects of stiffener 

parameters on the state of these stresses. In the last part of this chapter, criterion by which 

various stiffener designs may be evaluated for their tendency to separate, using the current 

analysis procedure, are presented. The results presented in the following sections are for a 

plate clamped on all four edges with a single stiffener, depicted in Figure 22. The plates are 

subjected to three levels of transverses pressure, 1, 10, and 20 psi, respectively. The 10 psi 

pressure level represents the operating aircraft fuselage pressure, while the 20 psi pressure 

represents the design level. The 1 psi pressure level is used since the linear and nonlinear 

analyses would produce similar results at this pressure level, and linear results for the other 

pressure levels can be scaled from the 1 psi analysis. 
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4. I The influence of Geometric Nonlinearity 

To a great extent, the importance of incorporating geometric nonlinearities in the skin- 

stiffener interface stress analysis will depend on how flexible the structure is. For stiffened 

aircraft structures which exhibit out-of-plane deformations on the order of magnitude of 2 to 

4 times the skin thickness, geometrically nonlinear effects can be significant. As was evident 

from Figure 26, the skin-stiffener configuration being studied did in fact experience such de- 

formation levels. 

To study the influence of geometric nonlinearities on the interface stresses, a baseline 

skin-stiffener configuration is considered. The three pressure levels are used, and the linear 

analysis case is also considered for comparison. The baseline stiffener design has a web 

height of h, = 1.5 in., a flange width of 2b = 1.5 in., and a flange thickness oft, = 0.04 in. 

For this configuration the flange and the web are constructed of a quasi-isotropic laminate 

with ( f 45/0/90), layup sequence. The skin is orthotropic with a laminate layup of 

( f 45/90,),, and skin thickness oft, = 0.04 in. 

Figure 35 illustrates the skin-stiffener interface stresses, 0, cry, and zy along the entire 

flange-skin interface length. Each portion of Figure 35 illustrates four relations, three of which 

represent nonlinear analyses for 1, 10, and 20 psi pressures, and one that corresponds to the 

linear analysis. Each relation is determined using a combination of stress data generated by 

an elasticity analysis in the local region, and an EAL finite-element analysis outside of this 

locality. In Figure 35 and all other figures which display stress data, stresses are normalized 

by the applied pressure. With this normalization the linear analysis is independent of the ap- 

plied pressure level. The distance, x, from the flange termination vertex is normalized by b, 

the flange half width, or by t,, the skin thickness. Clearly evident from the figure is the non- 

linear interaction between the level of applied pressure and the magnitude of the skin-stiffener 
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interface stresses. Focusing on the peel stress, for example, the linear and the 1 psi nonlinear 

analyses produce stresses of similar magnitude. However, the nonlinear analysis for 10 psi 

and the linear analysis show significantly different results. The 20 psi nonlinear analysis de- 

viates even more from the linear analysis. In all cases and for all stress components, the large 

stress gradients appears to be confined primarily to the local flange termination region. Under 

the web there is a local maximum in the peel stress and the maximum value tends to de- 

crease slightly with increases in pressure. Relations like the one shown in Figure 35 indicate 

that load transfer from the skin to the stiffener is confined to either a very short portion of the 

flange width (something on the order of b/4), or directly under the web. In Figure 36 attention 

is shifted to the interface stress distribution in the flange termination area. As in the previous 

figure, there are four relations in each portion of the figure, one for the linear analysis and the 

other three for nonlinear analyses. Only the interface peeling, ay3 and shearing, T ~ ,  stresses 

are shown in this figure. The most significant point to emerge from Figures 35 and 36 is a clear 

illustration of the nonlinear interaction between the applied pressure and skin-stiffener inter- 

face stresses. If a linear analysis is used, the normalized interface stress variation throughout 

the flange termination region would be independent of the applied pressure. However, with 

geometric nonlinearities included, significant changes in the characteristics of the stress dis- 

tributions are observed. In a geometrically nonlinear analysis an increase in pressure tends 

to flatten the peeling stress relation. Increases in pressure lead to a shift in the high stress 

gradients in both the peeling and shearing stress relations toward the flange termination 

point. As a result, it appears that increases in pressure lead to a reduction in the area under 

the two stress relations. The possible significance of such behavior in the stiffener separation 

context will be discussed latter. 

As noted above, the variation in 0,. throughout the local interface region is markedly dif- 

ferent between the 1 and 20 psi pressure levels. This may be understood by considering Fig- 

ure 37. In this figure the stress component G,, along the collocation boundaries CD and EF (see 

Figure 23) is plotted as a function of the distance through the thickness, y. Boundary EF cuts 
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through the skin at x = - 3t,, whereas, boundary CD cuts through the skin and the flange at 

x = + 3t,. It should be noted that on these boundaries ox = on and T~ = T,, and that both on 

and T, are collocated. Nevertheless, on is about two orders of magnitude larger than T,, and 

therefore has the most significant influence on the local elasticity solution. As in previous fig- 

ures there are four relations on each plot, one for the linear analysis and three for the non- 

linear analyses at the 1, 10, 20 psi pressure levels. Concentrating for the moment on the 

stress in the skin, Figure 37.a, the most important point to emerge is that at a low applied 

pressure, the skin is loaded primarily in bending. As a matter of fact, in a linear analysis of 

the stiffened plate which is loaded by pressure, the skin should be loaded in pure bending. 

This is indeed evident from the line depicting the linear analysis results. For a linear analysis 

at higher applied plate pressures, the relation would remain one of pure bending. However, 

due to the geometric nonlinearities, the stresses in the skin change from a state which is 

nearly pure bending, at low pressure, to a state at the high pressure level which is dominated 

by stretching. At 20 psi the skin is entirely in tension. Turning to the skin-flange combination, 

the normal stress distribution through the skin and the flange at x = + 31, (Figure 37.b) shows 

more complex characteristics. This is due to the abrupt change in material properties in going 

from the skin to the flange. Nevertheless, ox becomes purely tensile at the higher pressure 

level. Since the local region must remain in force equilibrium, this is expected, the stress 

distribution in the skin-flange region balancing out the stresses in the skin away from the 

flange. The above data suggest that the observed differences in the peeling stress distribution 

for the 1 and 20 psi pressure levels are related to the state of inplane loading. That is, at low 

pressure levels, for which the plate is loaded primarily in bending, the peel stress distribution 

is high at the flange termination and reverses to become negative away from the terminus. 

At high pressure levels, for which the plate is loaded primarily in inplane stretching, the peel 

stress is reduced at the flange terminus and as a result does not experience as large a re- 

versal away from the terminus, i.e., the peel stress distribution flattens with distance from the 

terminus. 
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To facilitate a better demonstration of this important nonlinear interaction between skin- 

stiffener interface stresses and applied pressure, stress eigenfactors (SEF) are used. These 

stress eigenfactors are defined as: 

C70.al 

[70.b] 

where K, and K, are the peeling and shearing stress eigenfactors, respectively, and A, is the 

first eigenvalue. As noted previously, values of - 1 i; Re&) S 0 will lead to singular stress 

characteristics near the flange termination vertex. It should be noted that in the field of frac- 

ture mechanics the stress eigenfactor is commonly known as the stress intensity factor. The 

stress eigenfactor is a measure of how rapidly the stresses become unbounded as the flange 

termination point is approached. The factor can be used as a measure of the severity of the 

interaction between the skin and the stiffener. Figure 38 shows the skin-stiffener interface 

peeling and shearing stress eigenfactors as a function of the applied plate pressure. The 

stress eigenfactors have been normalized by the peeling stress eigenfactor for a 1 psi linear 

analysis. The influence of nonlinear effects is clearly illustrated in the figure. For a linear 

analysis the stress eigenfactor would simply be in proportion to the applied pressure. How- 

ever, it is clear that inclusion of geometric nonlinearities results in a different behavior. Spe- 

cifically, the stress eigenfactors increase slower than the applied pressure. This is consistent 

with the finding of Figure 36 and both figures point to the need for considering geometric 

nonlinearities in the study of skin-stiffener interaction. More importantly, it would appear that 

when conducting failure analyses of such structures, it should be recognized that a doubling 

of applied pressure does not result in a doubling of interface stresses and to assume so would 

be in error. 
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Figure 38. Peeling and Shearing Stress Eigenfactors as a Function of Plate Pressure. 
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Finally, the influence of geometric nonlinearities on the out-of-plane deformations of the 

baseline plate configuration are considered in Figure 39. The figure consists of two portions: 

one depicting the out-of-plane deformation along the symmetry line (x,O,O) and the other por- 

tion the deformation under the web, colinear to the stiffener, along the symmetry line ( O , O , t ) .  

Each portion of the figure encompasses four relations, one representing a linear analysis at 

1 psi pressure, and the other three corresponding to the nonlinear analyses at 1, I O ,  and 20 

psi applied pressure. The out-of-plane displacement, v, is normalized by the skin thickness, 

t,. The distance from the plate center (in the directions x or z) is normalized by the flange 

half-width, b. Visible from Figure 39 is the large pillowing effect, the skin away from the flange 

experiencing much larger out-of-plane deformations than the flange. This pillowing effect be- 

comes more important with increases in pressure. As a result, geometric nonlinearities have 

an important role in determining the character of the pillowing. Specifically, for a linear 

analysis at 10 psi pressure, the maximum skin deflection would be about 7t,, while the stiffener 

deflection would be about 2t,. The nonlinear analysis at the same pressure level indicates that 

the maximum skin deflection is only 2.4t,, while the stiffener deflection is 1.4tS. Therefore it is 

clear that geometrically nonlinear effects actually reduce pillowing. The pillowing effect shown 

here was observed experimentally in [ IO ] .  

This concludes the discussion of the importance of geometric nonliriearities in the analysis 

of skin-stiffener interface stresses. It has been shown that neglecting these effects may lead 

to large errors in the calculation of plate response, particularly interface stresses. Next, at- 

tention is given to an examination of the influence of stiffener geometry and material proper- 

ties on skin-stiffener interface stresses. 
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To establish the usefulness of the analysis method in the design of stiffened composite 

structures, eight different stiffener configurations are studied. Table 2 lists the various stiffener 

designs considered, and their designation, geometry, and lamination sequence. In the fol- 

lowing sections each stiffener configuration is referred to by a nickname (second column in 

Table 2). This nickname signifies what is unique about this stiffener relative to the baseline 

configuration. The baseline configuration, configuration A, is always referred to by the nick- 

name "baseline". The baseline stiffener design was defined earlier but for the reference, it has 

a web height h, = 1.5 in., flange width 2b = 1.5 in., and flange thickness t, = 0.04 in. For 

baseline, the flange and the web are constructed of a quasi-isotropic laminate with 

( f 45/0/90), layup sequence. The skin is orthotropic with a laminate layup of ( & 45/90,),. In 

comparison to the baseline, the nickname "soft flange" was chosen for configuration B since 

the flange layup resulted in transverse flange modulus E, = 3.83 Msi relative to E, = 8.05 

Msi of the baseline configuration. Al l  other stiffener nickname designations follow the same 

logic. Lamina and laminate material properties are given in Appendix D. The structural anal- 

ysis is conducted using the mesh shown in Figure 27. It should be noted that tapering of the 

flange will lead to a slight reduction in the moment of inertia of the flange relative to the case 

of a 90" flange termination angle. However, the structural analysis model is insensitive to the 

influence of the reduced moment of inertia. For this reason configurations A, B, D, and F are 

analysed using the finite-element discretization model for the baseline flange. Similarly, con- 

figurations E, G, H, and I are analysed using the finite-element discretization model for the 

thick flange. However, the substructural finite-element model for 900 and 150 flange termi- 

nation angles are not the same, the difference reflecting the flange angle. The difference is 

similar to the difference between Figures 4 and 5. Based on the results which were presented 

in Figures 18 and 19, it is possible to use only one substructural finite-element analysis, for 

example, the one for the 90" flange angle, to produce two local elasticity solutions, one for 

90" flange termination angle and another one for 15" flange termination angle. However, 150 

is considered a shallow angle and it is not clear that one substructural analysis is all that is 

necessary. Since an important part of the current investigation is related to the method de- 
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velopment and verification, two separate substructure analyses are used. In a latter part of 

this section data is presented to support the assertion that a single analysis would lead to 

acceptably accurate results, but not as accurate as for less shallow angles, say 45'. 

The results in the following section are presented in a form of skin-stiffener interface peeling 

and shearing stresses throughout the localized region. Each figure represents a comparison 

of the stresses between the baseline stiffener configuration and one of the other eight stiffener 

designs. Stress data are given for 1 and 20 psi applied pressure and are based on a nonlinear 

analysis. The low pressure represents the level at which linear and nonlinear analyses give 

similar results. The high pressure level represents a pressure where geometrically nonlinear 

effects become significant. The figures are useful in demonstrating qualitatively how interface 

stresses are affected by the various stiffener parameters. However, they may be less helpful 

quantitatively since they provide stress distributions rather than one numerical value which 

can be applied to design, failure, or optimization procedures. The calculation of a numerical 

value is done in the last part of this chapter, where the performance of each stiffener config- 

uration is evaluated against the baseline stiffener design. 

4 

4 

Figure 40 shows a comparison of skin-stiffener interface peeling and shearing stresses 

between the baseline and the "soft flange" configurations. It appears from the figure that re- 

ducing the transverse flange modulus, E, , more than 50% has little effect on the peeling 

stress. It does tend to slightly reduce the shearing stress near the flange vertex. Figure 41 

details the interface peeling and shearing stresses for both the baseline and the "short web" 

configurations. Evident from the figure is that shortening the web leads to a significant re- 

duction in both the peeling and shearing stresses. At the high pressure, the peeling stress is 

essentially zero, while the shearing stress, although reduced, is still measurable. Since the 

softer stiffener configuration resulting from the short web leads to lower bending gradients in 

the flange termination region, the reduction in the peeling stress is somewhat expected. 

4 
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Figure 42 illustrates the character of the peeling and shearing stresses for the baseline and 

“tapered flange” stiffener configurations. Tapering the flange seems to have a considerable 

effect on the interface peeling stress distribution. At both low and high pressures it appears 

that tapering tends to distribute the stress as a tensile stress over a larger portion of the 

skin-stiffener interface, rather than having a stress reversal accompanied by a steep gradient. 

This, in turn, may reduce the separation tendency of this particular stiffener design. Tapering 

of the flange seems to have a smaller influence on the interface shearing stress distribution. 

In general it tends to slightly increase T~ for both low and high pressure levels. Figure 43 

demonstrates the influence of thickening the flange on the skin-stiffener peeling and shearing 

interface stresses. Generally speaking, thickening the flange tends to increase the interface 

peeling stress, increasing the gradient near the flange terminus and increasing the reversal 

away from this point. On the other hand, thickening the flange has a mixed effect on shearing 

stress. At high pressure the shear stress increases, while at low pressure the shear stress 

increases or decreases, depending on spatial location. 

Figure 44 delineates the effect of softening and tapering the flange at the same time. An 

examination of Figure 42 and Figure 44 reveals that the peeling stress distributions for the 

tapered flange configuration and for the soft and tapered flange configuration are very similar. 

However, in the latter case the stresses appear to be lower, reflecting the influence of the 

combined changes to the baseline case. The shearing stress distribution seems to be lower, 

as compared to the baseline design, near the vertex and slightly higher away from the vertex. 

Figure 45 displays a comparison between the baseline configuration and one for which the 

flange was thickened and tapered. If the results of Figure 45 are evaluated in the context of 

the results of Figure 43, it may be concluded that tapering the thick flange improves the dis- 

tribution of the peeling stress along the interface, but has a smaller effect on the shearing 

stress distribution. 
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Figure 46 depicts the influence of both thickening and softening the flange on the peeling 

and shearing interface stresses. Again, if one examines the results of Figure 46 in light of the 

data which were presented in Figure 43, it appears that softening the thick flange has little 

influence on the state of interface stresses as compared to the "thick flange" design. There- 

fore, the discussion offered for Figure 43 is also relevant for Figure 46. These results are also 

consistent with the results of Figure 40, where the baseline stiffener configuration was evalu- 

ated relative to a "soft flange" stiffener design of the same geometry. Finally, Figure 47 dem- 

onstrates the effect of thickening, softening, and tapering the flange on skin-stiffener interface 

peeling and shearing stresses. The following observations are made in connection with 

Figure 47: Softening the tapered thick flange does little to change the peeling stress distrib- 

ution in the local region (compare Figure 45 with Figure 47). However, tapering the soft thick 

I 

I 
flange does substantially reduce the peel stress (compare Figure 46 with Figure 47). Finally, 

tapering the soft thick flange substantially reduces T ~ .  Based on the results of Figure 47 and 

the other figures, it can be stated that the single most important influence on the interface 

stresses is flange tapering. Softening the flange and reducing the thickness have considerably 

less influence. 

At this point it is of interest to determined i f  the use of a single substructural analysis is 

sufficient for obtaining a local elasticity solution for both 90" and 15" flange termination angles. 

In section 2.6 it was shown that for the 90" and 45" flange termination angles, the local 

elasticity solution could be obtained from one substructural (or global) finite-element analysis 

for either 90" or 45" flange termination angles. However, some concern was raised as to 

whether these results are applicable for a very shallow flange termination angle. The results 

illustrated in Figure 48 provide insight into this. Figure 48 replicates the previous study of the 

45" and 90" flange termination angles (Figures 18 and 19) but considers 15" and 90" angles 

instead. In Figure 48 the the pressure loaded stiffened plate and clamped boundary conditions 

used in the above parameter study are considered. The two stress components of interest, 

cy and T,, are illustrated. The solid line in each portion of the figure represents the local 

1 
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elasticity solution obtained from the collocation of stress data from the 90" flange termination 

angle substructure finite-element analysis. On each portion of the figure there are two solid 

line relations; one illustrates the local elasticity solution for a 90" flange, and the other illus- 

trates the solution for a 15" flange, These curves are labeled "90" flange" and "15" flange", 

respectively. Similarly, the dashed lines on each portion of the figure represent the local 

elasticity solution obtained from the collocation of stress data from the 15" flange termination 

angle substructure finite-element analysis. There are two dashed line relations on each por- 

tion of the figure; one representing the local elasticity solution for the 90" flange, the other 

representing the local elasticity solution for the 15" flange. If the two curves which are labeled 

"90" flange" (Le., the dashed and the solid lines) coincide, it is possible to use either the 90" 

or 15" finite-element analysis results to produce the same 90" flange elasticity solution. Simi- 

larly, if the two curves labeled "15" flange" coincide, the use of either 90" or 15" flange ge- 

ometry finite-element analysis results to produce a 15" flange elasticity solution is justified. In 

general, the results of Figure 48 indicate that the level of agreement between the dashed and 

the solid lines for the same local elasticity solution produced by two different substructural 

analyses is not as good as the one observed in Figures 18 and 19. From a stiffener failure 

analysis point of view (discussed in the next section) the results of Figure 48 may be close 

enough. The worsening in agreement between the two approaches is directly related to the 

shallow flange termination angle, 15". It is reasonable to expect that at very shallow flange 

termination angles, modeling the flange tapered portion in the substructural analysis is im- 

portant. In addition, the results of Figures 18 and 19 are based on a linear analysis, whereas 

the present results are based on a geometrically nonlinear analysis. It is possible that the 

interaction between geometry and flange-skin interface response are more significant in the 

nonlinear range. 

Lastly, a significant point of interest is the out-of-plane deformations observed in the various 

stiffened plate configurations. Figure 49 illustrates the plate deformation v at the center (z=O) 

as a function of transverse distance, x, for four stiffener configurations. These configurations 
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are: the baseline case, the short web case, the thick flange case, and the soft flange case. 

The figure demonstrates some important aspects of skin-stiffener interaction. Initially, at low 

pressure levels, all skin-stiffener configurations show a pillowing effect. At high pressure level, 

the short web stiffener configuration does not pillow. The other 3 stiffener configurations, 

however, exhibit pillowing at high pressure levels. However, there are differences among 

these three cases. The thicker flange stiffener geometry results in nearly a rigid body trans- 

lation downward at the flange, i.e., v in the flange is practically independent of x. The soft 

flange, on the other hand, bends, its downward deflection increasing with increasing x. The 

baseline case represents a deformation characteristic between these two extremes. It should 

also be noted that the plate with the soft flange deflects less than the plate with the baseline 

flange. This is a consequence of the fact that in the soft flange configuration the 90° fibers in 

the baseline flange are converted into 0’ fibers. Since it is assumed that the flange and web 

are of the same laminate, the switching of the 90” fibers to Oo fibers stiffens the web, thereby 

decreasing the overall deflection of the plate. 

4 

4 

4.2.2 Stiffener Design Performance Evaluation 

In the above, the influence of stiffener design parameters on skin stiffener interaction have 

been examined from a qualitative point of view. In the following section, these effects are 

studied quantitatively. Interest here is in presenting numerical values by which a particular 

skin-stiffener design may be judged in terms of its tendency to experience skin-stiffener sep- 

aration failure. The results are presented relative to the baseline configuration. In the results 

to be presented, two stress parameters are used, the stress eigenfactor (SEF), mentioned 

previously, and the average stress factor (ASF). 

4 

4 
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The peeling, &, and shearing, K, stress eigenfactors, were defined by eq. 70.a and 70.b, 

respectively. In the present investigation the SEF concept is used as a measure of the severity 

in interaction between the stiffener and the skin, rather than as a failure criteria. A stiffener 

design which leads to a high SEF, relative to a baseline configuration, will be judged as having 

more tendency to separate. Similarly, a stiffener configuration which produces a lower SEF, 

relative to a baseline design, will be judged as having less tendency to separate. For example, 

if tapering the flange of the baseline configuration leads to lowering the SEF, then reducing the 

stiffener termination angle will be judged as a design improvement for the stiffener. Here care 

must be taken in evaluating the results. Changing one stiffener parameter my lead to a re- 

duction in K, but an increase in K,, or vice versa. This raises the question of which SEF is 

more significant in the initiation of skin stiffener separation K, or K,. Here it can only be said 

that epoxy resins and adhesives usually exhibit higher shearing strength relative to peeling 

strength. Therefore, it is reasonable to speculate that K, will be more important in determin- 

ing the tendency for skin stiffener separation. 

While the concept of a stress eigenfactor has been used successfully in the field of fracture 

mechanics (i.e., stress intensity factor) in isotropic materials as a parameter by which the in- 
e 

e 

itiation of crack growth and fracture can be determined, this concept has proven to be less 

useful in composite materials. This may be related to the heterogeneity of the material and the 

complex nature of crack propagation. In the skin-stiffener separation initiation context, there 

is no evidence for the existence of crack at the flange terminus prior to failure. Therefore, the 

use of the average stress factor in determining skin-stiffener interface strength may be more 

appropriate. For the present problem, the average stress factors are defined by; 

e 

e 
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where is the i’th eigenvalue in the truncated eigenfunction expansion. The parameter a, is 

the distance of integration along the flange interface from the flange terminus. Failure is based 

on critical values for S; and S; for a particular material. These must be determined exper- 

imentally. The average stress criteria was first proposed for use in composite structure ap- 

plications in [45]. In that study the criteria was applied to the calculation of laminates strength 

which contained holes and notches. More recently this concept was used in the investigation 

of the onset of delamination in composite laminates [46]. In that study the average stress cri- 

teria produced fairly good agreement with experimental results. The investigators postulated 

that the onset of delamination was strictly controlled by interlaminar transverse strength and 

therefore used S, only. The integration length was taken as 5 = 1 (tl being the lamina 

thickness) and S; was equal to the transverse strength of the composite. Due to the lack of 

experimental data, the average stress criteria in the present investigation is used as an ad- 

ditional parameter by which the different stiffener designs are evaluated. it is anticipated that 

both the SEF and the ASF will produce qualitatively similar results. 

tl 

Finally, it is recognized that skin-stiffener designs cannot be judged solely by their tendency 

to separate. Therefore, in addition to the stress parameters, the maximum skin and the 

center-of-plate out-of-plane deformation are given. This is to point out that a particular 

stiffener design may lead to a 50% reduction in & and K, but an increase of 2 to 3 times in 

the out-of-plane deflection. Such designs would be desirable from the skin-stiffener separation 

stand point, but may be unacceptable from the structural deformation point of view. 

Table 3 presents quantitative data relevant to the stiffener parametric study. The data given 

in the table is based on a 1 and a 20 psi pressure nonlinear analysis. The first column lists the 

stiffener configurations by their nicknames. The second column gives the two pressure levels. 

Columns 3 and 4 give the peeling and shearing stress eigenfactors, K, and K,. Columns 5 and 

6 provide the peeling and shearing average stress factors, S, and S,, for an integration dis- 

tance of aJt, = 0.0625. This value of a, corresponds to one lamina thickness for the materials 

considered here. Finally, columns 7 and 8 list values for the maximum skin and the center- 
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of-plate out-of-plane deflections, v, and v,, respectively. All values which are given in Table 3 

are normalized by the values calculated for the baseline configuration. Table 3 presents an 

enormous amount of data that can be compared in ways that are too numerous to be done 

here. However, two types of comparisons can be done, namely comparison resulting from 

softening, tapering, and thickening the baseline flange, and softening and tapering the thick 

flange. These comparisons will be made in the following paragraphs. 

Examination of the SEF data lead to the following observations: softening the flange (Le., 

reducing the transverse modulus EJ tends to increase K,, in both the baseline and thick 

flanges. This increase is more significant in the thick flange, as can be seen by a comparison 

between the SEF for the "thick flange" and the "thick and soft flange" configurations. On the 

other hand, softening the flange leads to a reduction in K, in both the baseline and thick 

flanges. For the soft flange, the reduction is 20% relative to the baseline case. Shortening 

the web, to half the height of the baseline configuration, results in drastic a decrease in both 

the peeling and shearing stress eigenfactors. Though not as dramatic, tapering the flange 

leads to a 30% or more reduction in Ky in the baseline case. For the thick flange configuration 

tapering leads to even greater reduction in b. However, this same design change leads to 

large increases in K, Thickening the flange brings about an increase of up to 50% in both K, 

and K, at 20 psi pressure. This increase happens even though the values of the engineering 

constants are the same for the two flanges (see Appendix D). Softening the tapered flange 

helps reduce Ky and K, by a moderate amount. This reduction amounts about 15% decrease 

in 6 and K,, respectively, for the thick flange at 20 psi pressure. A smaller decrease is ob- 

served at a lower pressure and for the baseline flange configuration. On the other hand, ta- 

pering the soft flange substantially reduce b in both the baseline and thick flanges 

configurations. This design change brings about a 50% reduction in K,, for the baseline flange 

at both 1 and 20 psi pressure. The same design change leads to about 65% reduction in K, 

at 1 and 20 psi pressure in the thick flange configuration. However, tapering the soft flange 

leads to a drastic increase in the shearing stress eigenfactor in both the baseline and thick 
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4 

4 
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flange configurations. This increase is similar in magnitude to the increase due to tapering 

alone. Based on the SEF data presented, the following general comments can be made: (a) 

Softening the flange leads to slight increases in K, and moderate decreases in K,; (b) Taper- 

ing the flange brings about a drastic reduction in K, but a substantial increase in K,; (c) 

Thickening the flange leads to up to a 50% increase in K, and K,; and (d) Shortening the web 

heights to half the baseline web height results in nearly 50% reduction in both K, and K,. 

The average stress factor produces results which, for the most part, are consistent with the 

SEF data. However, there are some inconsistencies.These are discussed next. The ASF, unlike 

the SEF, indicates that softening the flange leads to slight decrease in peel tendency. How- 

ever, the difference between the two measures is quite small, 5% increase in K, verses 8% 

decrease in S,. Another inconsistency relates to the values of K, and S, for the "thick & soft 

flange" configuration at 1 psi pressure. For this configuration K, is 4% higher than the 

baseline design, whereas S, is 10% lower. However, it should be noted that sofiening the 

thick flange produces the same trend in both the SEF and the ASF. That is, both K, and S, in- 

crease due to softening, whereas K, and s, decrease due to softening. Finally, in the SEF 

calculation, tapering the flange leads to an increase of 3 to 4 times in K, relative to the 

baseline configuration. The ASF shows a decrease in S, relative to the baseline stiffener de- 

sign. As a matter of fact, all the stiffener configurations except the "thick flange" and the "thick 

& soft flange" designs produce S, which is smaller than the baseline case. These results are 

consistent with the observations made in Figure 40 through Figure 47. The average stress, 

of course, will depend on the distance of integration, a,. For example, if the "tapered flange" 

configuration, Figure 42, is considered, it is obvious that extending the integration distance to, 

say, aJt, = 1 would result in different values for both S, and S,. This is what makes the SEF 

so useful in evaluating the effects of various stiffener parameters on skin stiffener interaction. 

The SEF is independent of any objective parameter such as a,. On the other hand, the ASF 

may be useful in determining the skin stiffener separation failure initiation. This can only be 

achieved with experimentally determined value for S;r and S;. 
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Finally, an examination of the out-of-plane deflections for the various stiffener designs 

shows that, relative to the baseline case, all configurations, except for the "short web" design, 

give the same or smaller out-of-plane deflections for the center-of-plate and the skin. Although 

the "short web" stiffener design leads to a substantial reduction in both the peeling and 

shearing stresses in the local region, it results in a large increase in the out-of-plane de- 

flections. 

In summary, i f  the stress data is considered together with the out-of-plane deflections, it 

may concluded that: (a) If a thick flange is used to increase structural rigidity, tapering and 

softening the flange will substantially reduce the risk of premature skin-stiffener separation; 

(b) Softening the flange (Le., putting more 00 fibers in the z direction) leads to a decrease in 

the center-of-plate out-of-plane deflection but a relatively small gain as far as interface 

stresses are concerned; and (c) Tapering the flange results in a small or nonexistent effect 

on the out-of-plane deformation but substantially reduces the risk of premature skin-stiffener 

separation. 

This concludes the quantitative evaluation of the performance of stiffener design parame- 

ters. In the next chapter some conclusions are put forth and recommendations for future re- 

search, as related to skin-stiffener interaction, are discussed. 
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5. Conclusion and Recommendations 

5.1 Concluding remarks 

In the following chapter, the work conducted in the present study is summarized. In addition, 

some recommendations for future research are highlighted. 

e 

e 

0 

As stated in the introduction, the objective of the investigation was to develop an analytical 

method by which skin-stiffener interface stresses could be accurately calculated. Particular 

attention was given to the flange termination region, a region where the stresses are high due 

to geometric and material discontinuity associated with this locality. Moreover, the stresses 

in this region are generally difficult to compute and so extra attention was given to this area 

of the interface. Furthermore, since stiffened panels are most commonly designed to operate 

at the postbuckling range, the analysis had to incorporate geometrically nonlinear effects. 

Considering the above, the following objectives were set: 

(a) The analyticat model should accurately represent the state of stress near the 

point of geometric and material discontinuity. 
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(b) The analysis should include geometric nonlinearities. 

(c) The procedure should be applicable to general stiffened composite panels. 

(d) The model should be sensitive to various skin and stiffener design parameters, 

such as stiffener geometry, and stiffenerlskin material architecture. 

The method developed addressed all of the above objectives. In Chapter 2 the first objective 

was addressed. This led to the development of a local-global analysis procedure, later called 

the local-substructure analysis procedure. The developments in this chapter were for ge- 

ometrically linear analyses. The local elasticity analysis was based on the eigenvalue expan- 

sion of the stress function. The eigenvalue expansion was applicable in the flange termination 

region and as a result, the stresses were known to within a set of arbitrary, but unknown, co- 

efficients which were associated with the eigenvalues. For a particular skin-stiffener problem, 

these coefficients were determined from the stresses obtained from a combination of a global 

finite-element analysis of the entire skin-stiffener cross-section and a collocation scheme. 

Once these constants were known, the stresses in the localized region could be uniquely de- 

termined. The local elasticity solution provided a rigorous solution which accurately charac- 

terized the material and geometric discontinuities associated with the flange termination 

region. Away from this region the global finite-element analysis produced accurate skin- 

stiffener interface stresses. The last part of Chapter 2 was devoted to the study of conver- 

gence and accuracy of the local elasticity solution. The accuracy issue was investigated by 

comparing the local elasticity solution with finite-element results for which the mesh was re- 

fined twice. The use of finite elements for comparison was due to the lack of another analysis 

of this particular problem. In general, it was found that the local elasticity solution scheme 

produced a very accurate interface stress representation in the flange termination region. 

Convergence of the local elasticity solution was studied by varying the number of eigenvalues 

in the truncated eigenvalue expansion, and by varying the number of the collocation points 

on the local region boundary. Generally, it was found that the use of 10 to 15 eigenvalues, in 
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the eigenvalue expansion, and 100 collocation points resulted in a converged local elasticity 

solution. 

In Chapter 3 the second and third objectives were addressed. In the first part of the chapter 

the local elasticity solution was extended to include geometrically nonlinear effects. Here the 

condition of small strains but finite rotations was assumed. It was shown that under these 

conditions, in a local region which undergoes spatially uniform rotations, the local elasticity 

solution procedure developed in Chapter 2 was valid, provided it was applied in the deformed 

body configuration. This approach was applied to an actual stiffened composite plate structure 

where both geometrically linear and nonlinear analyses were considered. The analysis of the 

entire structure consisted of three steps: a structure analysis, a substructural analysis, and a 

local elasticity analysis. First a structural level analysis of the entire stiffened plate was con- 

ducted using finite-element plate elements. Next, a typical cross-section region in the stiffened 

plate structure was isolated and a three dimensional finite-element analysis of the cross- 

section was performed. Finally, the stresses from the substructural analysis were coupled with 

a boundary collocation scheme to produce a rigorous elasticity solution in the flange termi- 

nation region. 

Finally, in Chapter 4 both the third and the fourth objectives were addressed. In this chapter 

the influence of geometric nonlinearities on skin-stiffener interface stresses was evaluated. 

The interest here was focused on determining what error would be encountered i f  a geomet- 

rically linear, rather than a geometrically nonlinear analysis was used in the computation of 

skin-stiffener interface stresses. In general, it was found that in flexible stiffened skin struc- 

tures, which exhibit out-of-plane deformations on the order of magnitude of 2 to 4 times the 

skin thickness, geometrically nonlinear effects in the calculation of interface stresses are very 

important. That is, the use of geometrically linear analysis, rather then nonlinear analysis, can 

lead to considerable error in the computed interface stresses. In the last part of the chapter 

the influence of stiffener design parameters on the skin-stiffener interface stresses was 

studied. Both geometric and material stiffener parameters were considered. The stiffener 
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parametric study included eight different stiffener configurations. In general, it was found that 

the local elasticity analysis was sensitive to the various stiffener design changes and provided 

very useful information by which these designs could be evaluated against a baseline stiffener 

configuration. The findings suggest that tapering and softening the flange simultaneously 

tends to reduce interface peeling stress in the local flange termination region. However, these 

same design modifications tend to increase the shearing stress in this locality. Since it is 

believed that the stiffener separation failure is strongly related to the state of peeling stress 

at the flange termination region, the use of flange tapering and softening may prove benefici- 

ary in this respect. Finally, use was made of the peeling and shearing stress eigenfactors 

(SEF) in evaluating the performance of the various stiffener designs against a baseline con- 

figuration. Another stress parameter used was the average stress factor (ASF). Both the SIF 

and the ASF could be calculated in a closed form from the truncated eigenvalue expansion 

elasticity solution. 

As summarized above, all the objectives were addressed by the method developed in this 

study. The results demonstrated that this analytical tool is accurate and sensitive in solving 

skin-stiffener interface stress problems in actual stiffened composite skin aircraft structures. 

4 
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52 Recommendations for future research 

The method developed produced accurate and useful skin-stiffener interface stress calcu- 

lations for stiffened composite skin aircraft structures. However, the analytical model was 

based on certain assumptions which restricted its application to the most general skin- 

stiffener interface problems. In this section recommendations are made related to the capa- 

bility enhancement of the current model to a more general one. Other recommendations are 

related to analysis cost reduction, and to analytical and experimental correlation of stiffener 

I 
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separation predictions. The recommendations are divided into two categories, one which re- 

lates to analytical development and the other is related to experimental considerations. 

5.2.1 Analytical Recommendations 

(a) In the present investigation the skin and stiffener were restricted to symmetric balanced 

laminates. This, in conjunction with the integrated laminate properties assumption, led to 

orthotropic material constitutive relations. As a result, material stretching and bending and/or 

twisting coupling effects were ignored. For most stiffened composite skin aircraft structures 

such a simplification is justified. However, there are some cases in which the use of unbal- 

anced or unsymmetric laminates for the skin and/or the stiffener is desirable. Hence, to render 

the present analytical tool more general, the local elasticity solution should be extended to 

include more general material constitutive law. It should be noted that for more general ma- 

terial characteristics, the two stress functions, F(x,y) and Y(x,y) are coupled. However, in 

general, the solution approach is the same (see refs. 21 and 22). In that regard, it should be 

mentioned that for the cases studied here, 2, and T= were identically zero. 

(b) In the present investigation it was assumed that the stress components did not vary with 

z. This restriction is justified for most instances over short distance in the z direction where 

the local elasticity solution is applied. However, there are some cases in which the stresses, 

and in particular 0, , do vary rapidly with z. In such cases the local elasticity solution can be 

modified to include a linear variation in 0, with z (see ref. 22). The solution procedure to such 

a case is similar to the one presented here. 

(c) Finally, in the present analysis procedure use was made of the substructural analysis 

of the skin-stiffener cross-section. The primary function of this step was to generate the 

boundary conditions for the local elasticity analysis, as well as for the computation of skin- 
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stiffener stresses outside of the local region. If the sole purpose of this step is only to generate 

boundary conditions, it would be advantageous from a cost standpoint to eliminate this step. 

One way by which the above may be achieved is by using laminated plate theory to compute 

the stresses on the local region boundaries using the inplane loading from the structural 

analysis. By doing so the local elasticity analysis can be incorporated as a post-processor in 

a structural analysis program. 

(I 

4 

4 
5.2.2 Experimental Recommendations 

(a) The lack of experimental data makes it impossible to evaluate the usefulness of the 

present analytical approach in determining the initiation of skin-stiffener separation failure. 

Therefore, it is recommended that stiffener-skin specimens configurations will be tested to 

failure under various loading conditions to obtain skin-stiffener interface strength, S; and S;. 

(b) Once critical values of the failure parameters are known, they can be used as input to 

make analytical failure predictions of actual skin-stiffener structures. For example, using the 

experimental devise describe in [ lo]  for testing single stiffener pate configuration subjected 

to uniform transverse pressure, a comparison can be made between analytical prediction and 

experimental results. 

4 

(I 
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Appendix A. Material Constitutive Relations 

A.1 Transformation Relations 

a 

e 

a 

0 

The geometric relations between the lamina principal 1-2-3 coordinates system and the 

laminate x-y-z system are depicted in Figure A.1. The principal lamina 1-2-3 material coordi- 

nates correspond to the transverse, normal, and longitudinal to the fiber directions respec- 

tively. The angle cp measures the angle between the 3 and z axis, a positive rotation 

corresponding to rotation of the fiber from the z axis to the x axis. The well known lamina 

constitutive relations in the 1-2-3 system are written as follows: 

S I 2  

s22 

s32 

0 

0 

0 

s23 

s33  

0 

0 

0 

0 

0 

0 

s44 

0 

0 

0 

0 

0 

0 

s55 

0 
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Figure A.1. Lamina and Laminate Material Coordinates Nomenclature. 
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where, 

a 

~ 

0 

a 

, i = 1,2,3 , 1 s.. = - 
E, II 

SI] = - , i ,  j = 1,2,3 , i # j  , 
E j 

1 sa - 1  - - I s55 = - 1 , s , = - ,  
GI 2 G23 G13 

and, S,, = SI,. In inverted form the lamina constitutive relation in the 1-2-3 system takes the 

following form; 

0 

a 

where, 

0 

c12 c13 

c12 c22 c23 

c13 c23 c33 

0 0 o c , o  0 

0 0 0 o c , o  

0 0 0 0 oc,, 

- s22s33 - s;3 - s12s13 - s23s11 
I c23 - S S C l l  - I 

- SI1 s33 - s:3 
S c22 - - s12s23 - 

S c13 - 

- SI1 s22 - s:2 - - 
S ' c12 - c33 - I S 

1 c,, = - 
SI I 
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and, 
I 

The transformation of the stresses and the strains from the 1-2-3 coordinate system to the x- 

y-z system leads to; 

+ 
01 = [ T i l  Gx , 

+ 
= [T,] 2x . 

The transformation matrices for the stresses, IT,] and [T,], are given by; 

m2 

0 

n2 

0 

mn 

0 

o n2 

1 0 

o m2 

0 0  

0 -mn 

0 0  

0 

0 

0 

m 

0 

- n  

-2mn 

0 

2mn 

0 

(m2 - n2) 

0 

0 

0 

0 

n 

0 

m 

CA.3.al 

[A.B.b] 

CA.4.al 

4 

4 

4 

and, 

m2 

0 

n2 

0 

2mn 

0 

0 n2 0 - mn 

1 0 0 0 

o m2 0 rnn 

0 0 m 0 

o -2mn o (m2 - n2) 

0 0 - n  0 

0 

0 

0 

n 

0 

m 

[A.4.b] 

I 

Combining eqs. A.1 through eq. A.4, the lamina constitutive relations in the x-y-z coordinates 

system my be written as; 
I 
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a 
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The coefficients in the compliance matrix, [ G I ,  are 
- 
SI, = m4SI1 + m2n2(2 St3 + Sss) + n4S,, , 

SI, = Spl = m2Sl, + n2S,, , 

Si3 = S31 = (m4 + n4) SI, + m2n2(SI1 + S,, - S,,) , 

SI, = S,, = m3n(2S,, - 2SI1 + S,) + m n3(2S,, - 2S13 - Ss5) , 

s,, = s* I 

S23 = Sn = n2Slz + m2S23 , 

S, = Ss2 = 2mn(S, - S12) , 

S, = n4S,, + m2n2(2Sl, + S,) + m4Sa , 

S, = Sw = m3n(2S, - 2SlS - S,) + m n3(2S1, - 2S1, + Sss) . 
S, = m2Su + n2S, , 

S, = Su = mn(S, - S,) , 

Sm = 2 rn2n*(2S3, - 2 SI, - 4S1, - S,) + (m4 + n4) S, , 

S, = n2Su + m2S, , I 

- - 
- - 
- - 

- 
- - 
- - 
- 
- - 
- 
- - 
- 
- 

and all other coefficients are zero, The coefficients in the lamina stiffness matrix, [El are 

given as; 
- 
Cll = m4C11 + m2nz(C13 + 2%) + 

C,, = Cn = m2C12 + n2Ca , 

CI3 = C31 = (m4 + n3 C13 + m2 n2 ( 

- - 
- - 

- - 

n4% , 

I1 + c33 - ' 
CIS = Cn = m 3 n  (C43 - Cll) + m n3(C3, - C13) , 

c,, = c, 9 

C23 = Cg2 = n2C,, + m2Cz3 , 

c2, = C12 = m n (C23 - C12) , 

C33 = n4C11 + 2m2n*(C1, + 2 G )  + m4Cm , 

- 
- - 
- - 
- 

CS! 
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- - 
C,, = C,, = m n3(C13 - C,l) + m3n(C,, - C13) - 2 m  n(m2 - n2)Css , 

C, = m2Cu + n2C,; , 

C, = C, = mn(Cu - C&) , 

GS = 2 mZn2(C,, + C,l - 2C1, - 2C,,) + (m4 + n4) C, , 

C,, = n2CU + m2Ces , 

- 

- - 
- 
- 

and all other coefficients are zero. 

I 

4 

A.2 lntegrated Material Propetties 

The integrated laminate properties are obtained by smearing the individual lamina prop- 

erties throughout the thickness of the laminate. This is achieved by defining an average stress 

through the laminate thickness, h, Le., 4 

I 
Substitution of eq. A.5.a into eq. A.6 leads to the laminate constitutive relations: 

All A12 

A21 

A32 A33 

0 0 O A U O  0 

0 0 0 O A 5 5 O  

0 0 0 0 

I 

[A.?.a] 

4 

where the overbar is dropped from the stresses for convenience. The laminate stiffness 

components A, are given by, 
4 

Appendix A. Material Constitutive Relations 146 

4 
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0 

e 

0 

[A.7.b] 

n being the number of laminae and yk and yk-, are defined in the same manner as in classical 

laminate theory (CLT). In inverted form, 

a12 a13 0 0 0  

a12 a22 a23 

a13 a23 a33 

0 0 O a , O  0 

0 0 0 O a , , O  

0 0 0 0 O a 6 6  

It should be noted that although each individual lamina is considered to be anisotropic, the 

laminate constitutive law is that of orthotropic material. The coefficients of the laminate com- 

pliance matrix, a,,, are given by; 

- A11 A33 - 4 3  - - A13 
A ' a13 - a22 - 9 A 

0 
- 4 1  A22 - 4 2  - - 4 2  

A ' a12 - a33 - I A 
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Appendix B. The Eigenvalue Problem 

The eigenvalue problem for h and 6 is developed in this appendix for a general bimaterial 

composite wedge depicted by Figure 6.1. The traction-free wedge boundaries are located by 

the angles a, and ut in material 1 and 2, respectively. 

6.7 The 6 Eigenvalue Problem 

The set of equations which form the eigenvalue problem for 6 is written symbolically as, 

where the coefficients q,i are given by, 

qll = (cosa, + i dl) sin u,)*+l , q12 = (cosa, - i ~ ( 1 )  sin u,)*+l , 
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Figure B.1. General Bimaterial Composite Wedge Geometry. 
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with, 

and, 

I 

The eigenvector , 6 ,  is given by, 

the boundary conditions, the two vectors are related by an equation of the form 

leading to, 

where the two eigenvectors, 6(l) and are related to material 1 and 2, respectively. Due to 

The reduced eigenvalue problem takes the form, 

C6.3.al 

I 

I 
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0 CB.41 

a 

B.2 The h Eigenvalue Problem 

The eigenvalue problem associated with h is written symbolically as, 

0 

0 

a 

CB.51 
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qk = 8 1 2 p k  +x 822 * 

In addition, pk has one of four unique value given by the characteristic equation 

822 + ( 2 8 1 2  + 866)4 + 811 P; = 0 * 

Such roots do exist and they are always complex or imaginary. 

The eigenvector e is define by, 

where, the 

the boundary conditions, the two vectors are related by an equation of the form 

and e(2) are two vectors associated with material 1 and 2, respectively. Due to 

where, 

The relation between the two vectors is then given by, 

where, 

is the vector transformation matrix. This leads to the reduced eigenvalue problem associated 

with only. The problem may be written as 
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where, 

hlj = all , i = 1,2 , j = 1,2,3,4 , 

e 
where 1, are the elements of the transformation matrix [TI. 

B.3 Eigenvedor Representation 

The eigenvectors 6,, and 2, associated with the nth eigenvalue, given by eqs. B.2 and B.6, 

respectively, are of arbitrary magnitude. To eliminate some of the arbitrariness the vectors 

are normalized according to the following procedure. Letting D# = Dn(-=-, 1 1) leads 
4 2  J2 

to, I 

where, 

[B.lO] ~ 
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and D, is an arbitrary constant, D, = d, + i d', . If 6 is real, then the normalization of the vector 

Dill is achieved by letting d# = 1.0 and D, = d, . The eigenvector associated with material 

2, 6i2), is obtained from the vector transformation eq. B.3.b. 

4 
In a similar manner letting, 

1 1 ($1 = Cn(-, - 
JZ J2) * 

4 

leads to, 

4 

4 
where, 

and C, is an arbitrary complex constant, C, = c, + i c',. As before, if h is real, then 

4 

4 

c# = 1.0 and C, = c, is a real constant. The eigenvector Ci2) associated with material 2 is 

obtained via the vector transformation eq. B.8. 

a 
The unknown coefficients d# and c$ , I  = 2,3,4 are obtained by eqs. B.4 and B.9, re- 

spectively, by eliminating the first row and first column from matrix [J] and [HI, respectively. 

Thus, for both 6 and h there is one complex undetermined coefficient associated with each 

eigenvalue. 
a 
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0 

0 

a 

6.4 Eigenfunction Expansion Representation 

The eigenfunction expansion representation of FC') (x,y) and y/(.) (x,y) will differ depending 

on whether the 6 and h are real or complex. As noted before, if 6 and h are complex they will 

occur in complex conjugate pairs. In the following section the proper functional form for a real 

and complex eigenvalue is discussed. Only detailed development for F(*) (x,y) is shown since 

the form for 'I"*) (x,y) is identical. 

Real Elaenvalue 

For a real eigenvalue , 

h = y (real) 

The stresses associated with F(*' (x,y) can be written as, 

where, 

Ak = ak + i a'k 

0 

e 

0 

CB.121 

and a,, is the conjugate of GI,. in addition glk and g'ik are unique functions of r and 8 ., as 

shown next. Considering oy for example, 

By making the following substitutions; 
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x = r c o s 8  , y = r s i n e  , 

z = x + p y  = r p e "  , 

where, 

p2 = (cos e + a sin el2 + p2 sin2e , 

sin 8 
cos 8 + a sin 8 ' 

tan yt = 

[E).14.c] 

[ El. 14.d 1 

4 

4 
cry becomes 

oy = A, Gyl + A, GY2 + A,gy, + A4gY2 . 

In the above 

[B.15] 

As noted earlier, p always occurs in a complex conjugates pairs, that is, 

al + i p 1  , = a2 + i P 2  , [B.17.a] P1 - - 

CB.17. b] - 
P3 - - al - iPl , P4 - a? - i P2 * 

Similar results can be obtained for the other stress components. Expansion of eq. 8.12 leads 

to, 

4 
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0 

However, since <rl must be a real quantity and gik and g’ik are unique functions of r and 8 ,  

setting the imaginary part of oi to zero leads to, 

- 
that is A,+* = A,, Next the coefficients are redefined, 

0 

a’k = - 2a’k . ck+2 - - a’k+2 - 

It follows that the stresses can be written as, 

with c,, (k = 1,2,3,4) being real constants. 

Complex Eiaenvalue 

As was previously stated, if h is complex it will occur in complex conjugate pairs, Le., 

h = y + i c p ,  X = y - i c p .  

The stresses associated with F(’) (x,y) , for a pair of complex conjugate eigenvalue, will take 

the following form; 

CB.201 

with A, and 6, being arbitrary complex constants, A, = a, + i a’,, and Bk = b, + i b‘,. The 

function a,, associated with x is the conjugate of the function Gik = gik + i g‘lk associated 
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with k . In addition, gik and g’ik are unique functions of r and 8, as shown next. Considering o, 

again for h and X in the most general form becomes, 

where for complex eigenvalues, using relations B.14.a and B.14.b, 

- zT; = (r &)‘e VkQCcos q k  + i sin q k l  , 

z; = (rpk)YeVk’P C cos q’k + i sin q ’ k l  , 

cB.211 

[ B. 22.a 1 

CB.22.bl 

4 

where, 

flk = Y w k  + In(rPk) I 

ll’k = Ywk  - 9 In(rPk) * 

Considering eqs. B.14 and 8.17 and substituting eq. B.22 into eq. B.21, a, may be written as, 

= A l f I  + A2f2 + A3f3 + A4f4 + A5f5 + A6fe + A7f7 + A,fe CB.231 QY 

where, fi , i = 1,2, ..., 8 are complex functions. Next, it can be shown that f, is the conjugate 

- 
Similarly, f, = f,, f, = f,, and f, = f,. Since the numbering of the functions and coefficients is 

arbitrary, eq. B.23 can be written in the form of eq. 8.20, where, 

GyI = fq , Gy2 = f2 , Gy3 = f3 , Gy, = f4 

- - - - 
Gyl = f l  , G* = f, , Gy3 = f, I Gy4 = f4 . 

4 

4 
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0 

0 

a 

0 

Similar results can be obtained for the other stress components. Expansion of eq. B.20 leads 

to the following result: 

+ i c (a’k + b‘k) gik + (a, - bk) g’lk 3 * cB.241 

However, since 0, must be a real quantity and gik and g’lk are unique functions of r and 0. 

Setting the imaginary part of 0, to zero leads to, 

ak 1 
b’k = - a’k , b, = 

- 
Le., B, = A,. Renaming the constants as, 

ck = ak + bk = 2 b k ,  

C’k = b’k - a’k = 2 b’k , 

leads to the following eigenfunction expansion of stress, 

where ck and c’k are two unknown real 

CB.251 

constants. It should be noted that the above repre- 

sentation of stresses leads to the classical stress formulation arising from a complex stress 

function. For example, 

a2F 0, = 2 Re C c k 2  1 , etc ... 
k = l  ay 

with ck being an arbitrary complex constant. 
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Based on the above discussion and the one given in the previous section, the general form 

of the stress functions F(.) (x,y) and "Io) (x,y) can be written. 

Real Eiaenvalue 

For real nth eigenvalue, the two stress functions F(.) (x,y) and "I*) (x,y) are given by, 

CB.261 

4 

with c, and d, being arbitrary real constants and cnk, (k = 1,2,3,4) and d,, , (k = 12) known 

quantities of the normalized nth eigenvector (see section 8.2). 

Complex Eigenvalues 

If the nth eigenvalue is complex, the two stress functions are given by, 

CB.281 4 
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0 

e 

0 

CB.291 

with c,, c',, d, and d', being arbitrary real constants and Cnk, (k = 1,2,3,4) and 

d,, , (k = 1,2) being known quantities of the normalized nth eigenvectors. With the functional 

form for FC') (x,y) and Y(*) (x,y) known, the eigenfunction expansion for both stresses and dis- 

placements can be determined. 

0 

e 

0 

e 

e 
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Appendix C. Finite-Element Formulation 

4 

CJ PEZD Finite-Element Formulation 

In this appendix the PE2D finite-element program is described in greater detail. This pro- 

gram is based on the elasticity equations which govern an elastic body for which the stresses 
5 

do not vary along it’s generator (the z axis). Such a condition is referred to as the a general- 

ized plane deformation. 

The finite-element program is based on the displacement formulation approach and it is 

derived from the total potential energy function, lip, 

4 

4 

1 +T -+ ll,, = 2 Jv E, 0, dV - JA uT t dA , cc.11 
4 

The first term corresponds to the body’s total strain energy, the second to the work done by 

the external force, t. The work done by the body forces is neglected. The generalized plane 

deformation finite-element model is based on the displacement field for homogeneous 4 
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_ -  

e 
l 

e 

e 

anisotropic body for which the stress do not vary with z for this situation. The displacement 

functions u, v, and w have the following form: 

w = (B,x + 6,y + B,) a3,t + W(x,y) 

e 

e 

+ 0 1 y  - 02x  + w, , Cc.2.cl 

where B, , i = 1,2,3,4, are arbitrary constants of integration, a,, i = 1,2,3 are rigid body ro- 

tations, and u, , v, and w, are rigid body translations. In addition, U(x,y), V(x,y) and W(x,y) are 

unknown displacement functions which depend on x and y only. This displacement field can 

be written in vectorial form as, 

u = u , + u ,  cc.31 

e 
where, 

e 

e 

and, 

B 4 Y Z  * 
B l  a33 z2 - u,(x,y,z) = - - 2 

v,(x,y,z) = - - B 2 a a z 2  + B , X Z . ,  
2 
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4 

The terms associated with the rigid body rotation and translation are omitted. It may be shown 

that the unknown constants B,, i = 1,2,3,4 , are related to the body‘s kinematic end condi- 

tions, i.e., 

In the stiffened-skin structural context, e, and K, are the axial extension and curvature in the 

z direction, and K, is the twist curvature about the z axis. The coefficient B, relates to the in- 

plane twist about the y-axis and is of no consequence in the structure considered here and is 

therefore set to zero. The strain vector, z,, is given by, 

where, 

4 

4 

4 

aw + ax) I 

au ,= .  aw . aw . au , o ; -  - - 
* ‘ a x ’ *  

iiT = {ax, Cc.4.cl 

and, 

Next, the laminate constitutive law may be written in a reduced form as, 

CC.4.dl 
d 
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e 

a 

a 

where, 

e 

a 

and, 

a 
I 
I 

, i J  = 1,2,4,5,6 . ai3 9 3  PI1 = aij - - a33 

e 
+ 

I 

Notice that E and 

inverted form eq. C.5 will be referred to by, 

are modified by condensing ox out (i.e., the reduced compliance form). In 

e 

a 

e 

Considering eqs. C.l and C.5 it may be concluded that the problem associated with U(x,y) 

and V(x,y) is decoupled from the problem which involves W(x,y). In addition, since U, V, and 

W are functions which depend on x and y alone, only a two-dimensional finite-element model 

is required. Considering eqs. C.3, C.5 and C.6 the total potential energy for a typical element 

of thickness to in the z direction becomes, 
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where Am is the element surface area in the x-y plane and S: is the part of the element 

boundary on which external traction forces are acting. In the displacement formulation 

finite-element program, the unknown displacement functions, U(x,y), V(x,y), and W(x,y) are 

approximated using a Lagrangian interpolation functions, 

4 

where, u,, v, and wI are the generalized nodal displacements and vi are the two-dimensional 

Lagrangian interpolation function. The interpolation functions wI assume different forms, de- 

pending on the type of element used. In the present investigation two types of element were 

used; the &node rectangular and the 6-node triangular isoparametric elements. The interpo- 

lation functions for these elements have the following form; 

8-Node IsoParametric Element InterPolation Functions 
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a 

a 

a 

a 

a 

a 

a 

a 

a 

Cc.9.cl 

CC.9.d) 

[c.g.el 

CC.9.fl 

Cc.9.gl 

[C.9.h] 

&Node IsoParametrlc Element Interpolation Functions 

wick9 11) = (1 - 5 - w - 2 k - 27) 9 C C . ~ O . ~ ]  

w 2 ( 5 4 )  = k ( 2 k  - 1) I [C.lO.b] 

w3(k971) = q(2rl  - 1) I CC.lO.cl 

w4(5Jl) = 4 5 ( 1  - k - q )  1 [C.lO.d] 

wdk9 ?) = 4 6 7  t C C . ~ O . ~ ]  

w6(k*V) = 4 7 ( 1 - c - 7 )  I cc. 1O.fl 

where the elements nodal numbering and natural coordinates system are shown in Figure C.1. 

Substitution of eqs. C.8 into eq. C.4.b leads to 
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e 

e 

0 

e 

+ 
E = B q ,  

where, 

q = [u, vi w,] , i = 1,2 ,..., n 

are the nodal displacements. The matrix B is given by, 

B = [Bq B, ... B,] , 

where, 

0 

e 

e 

e 

0 

0 

Finally, substituting eqs. C.2, C.8, and C.9 into eq. 

for a typical element, 

c.7 

[c.111 

[c.121 

, i  = 1,2 ,..., n . 

and minimizing the total potential energy 

- tess. 0 YTt dS = 0 . cc.131 

Next if only the solution for U and V are considered, the above integral equations may be cast 

into a set of simultaneous equations in a matrix form 

C ~ 1 4 . a l  
I 

I 
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or in the more common form, 

[ k l q  = F . [C.14.b] 

The components of the stiffness matrix, [k] and force vector, F are given as follows: 

dxdy (e, + KZY) 
a33 F: = ta JA. [ Q l l  a13 412 a 2 3 1 x  

[C.15.b] 

CC.15.Cl 

[C.15.d] 

+ te Js. wit, ds , i,j = 1,2 ,..., n . 
a 

[c. i 5. e l  

Using the interpolation functions, eqs. C.9 and C.10, the elements stiffness matrices and force 

vectors in eqs. C.15.a through C.15.e can be evaluated numerically. Once [k] and F are known 

the solution for q can be obtained. 

4 
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C.2 EAL Finite-Element Program 

The EAL finite-element program is based on hybrid element formulation. In the displacement 

formulation finite-element approach, the element stiffness matrices are derived using the 

principle of minimum potential energy. Whereas, in the hybrid finite-element formulation the 

element stiffness matrix are derived using the complementary energy principle given by, 

where the work done by the body forces were neglected. In eq. C.16, C is the material stiffness 

matrix, u is the displacement vector, and t is the surface traction vector. In the hybrid element 

formulation the stresses are written in terms of generalized stress coefficients, 

+ 
o = P b ,  

where, 

bT = [b, b2 ... bn] , 

e 

cc.171 

and P is a matrix which depends on position and is chosen in such a way so that 6 satisfies 

the stress equilibrium equations identically. Using eq. C.17 the body internal strain energy 

becomes, 

0 = 1 bT (Sv PTCP dV 1 b . cC.181 
2 

Next the displacements are written in terms of the element generalized nodal displacements, 

u = L q ,  cc.191 
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a 

where L is a function of position and insures inter-element compatibility. In addition, the sur- 

face tractions may be related to the body stresses by, 
4 

t = R b ,  cc.203 

4 
where R is a function of the boundary position. Upon substitution of eqs. C.18 through C.20 into 

eq. C.16 the total complementary energy becomes, 

n, = -b 1 T  H b  - b T T q  , 2 

where, 

H = Jv PTCPdV , 

cc.211 4 

4 

T = SA RTLdA . 

4 
The next step involves the minimization of XI, with respect to the generalized stress coeffi- 

cients, b,, 

leading to a relation between b and q, 

b = H - ' T q  . 

From which the element stiffness matrix is calculated, 

[&I = T ~ H - ' T  . 

The solution to the finite-element problem is obtained in the standard form, Le., 

c k l  q = F , 

4 

4 

4 
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e 

e 

e 

except that [k] is replaced by [k]. If [E] is the stiffness matrix of perfectly conforming ele- 

ments, than [k] approaches [E] from the soft side. Whereas, [k], as derived from the dis- 

placement formulation finite-element, approaches [E] from the stiff side. 

EAL - E43 and E33 Elements 

The E43 and E33 are the 4-node rectangular and 3-node triangular plate elements. Each 

node of these elements has 5 degrees of freedom (dof) consisting of two rotation and three 

displacement components. The element formulation is based on the assumed stress resultant 

polynomials which satisfy the following plate equilibrium equations; 

aa,+- dQY + q = o ,  
ax aY 

e 

- Q, , - -  dMX, + - -  aMY 
ax dY 

e 

e 

a*M, d2MX, 8MX 

ax2 axay dY2 
+ -  + q = o ,  + 2- 

where q is applied uniform transverse load. Al l  symbol and coordinate nordhnclature are 

those common to the theory of plates. The stress resultant polynomials which satisfy the 

above equations have the following form; 

e 
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z 
where, 

E33 Element 

Nx = b3 , Ny = b2 , Nxy = b, , 

b4 b9 b? 1 

b5 bll b9 b15 

b7 b10 b12 b16 

ba b14 b13 b17 

bll - b13 - b17 b15 

b12 - b14 b16 - b17 

- P  
b17 - - 2 .  

The plate constitutive relations for composite materials are given by, 

a 

4 

4 

4 
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EAL - S61 and S81 Solid Elements 

a 

a 

e 

a 

The S61 and S81 are 6-nodes, pentahedron, and &nodes, hexahedron, solid elements. Each 

node of these elements has 3 degrees of freedom, u, v, and w. For these elements the as- 

sumed stress polynomials have the following form: 

(J, = b, + b,y + b,z + b,,yz , 

(J, = b, + b,X + b1,Z + b1,X.Z , 

(J, = b, + bi1 x + b1,y + b1,xy , 

T~ = bS + bl,x , 

T= = b, + b1,y 

zv = b, + b,3z , 

These set of assumed stress polynomials satisfy the stress equilibrium equations three- 

dimensional elastic body. The element constitutive law assumes the most general anisotropic 

form, 

+ 
E, = CSIT;, , 

where [SI is a fully populated matrix. 
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Appendix D. Material Properties and Eigenvalue 

Data 

The material properties used in the current investigation are representative of materials 

used by the aircraft industry. Though not representing any particular material, they are used 

here to demonstrate the analytical model. The lamina principal material properties are, 

El = E, = 2.1 Msi , E, = 20.0 Msi , 

G,, = G32 = GI, = 0.85 Msi , 

v31 = v32 = v12 - - 0.21 , 

with the 1, 2, and 3 being the transverse, thickness, and tiber-direction respectively. The inte- 

grated laminate material properties are obtained by smearing the individual lamina properties 

through the thickness of the laminate. Table D.1 lists the engineering constants for the differ- 

ent laminates used in the investigation. In the study, two sets of skin-stiffener material system 

combinations were used. In both of these combinations the skin laminate was always main- 

d 

4 

4 
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tained at ( f 45/90,),. The stiffener flange laminate layup varied. The following four stiffener 

flange laminates were used: 1. ( f 45/0/90), ; 2. ( f 45/0/9040/ f 45). ; 3. ( f 45/0,), ; and 4. 

( f 45/0J f 45),. In the stiffener parametric study context, laminate 1 is the baseline stiffener 

flange configuration, laminate 2 is the "thick flange", laminate 3 is the "sofl flange", and lami- 

nate 4 is the "thick & soft flange" configuration. From Table D.l it is clear that the combination 

of the skin laminate with either the first or the second flange laminate (Le., laminate 1 or 2) 

will produce the same set of eigenvalues for a given flange termination angle. This material 

system combination is referred to as combination no. 1. The same is true for skin-stiffener 

material combination which use flange laminates 3 or 4. This material system combination is 

referred to as combination no. 2. The eigenvalues for these two material system combinations 

and for three flange termination angles are given in Table D.2 and 0.3,  respectively. 

4 

4 

4 

4 

Finally, the adhesive layer material properties used to produce the results in section 2.6 

were taken from Delale and Egdogan' and are listed below; 4 

E = 0.445 Msi , 

G = 0.165 Msi . 

4 

4 1 Delale, F., Erdogan, F., and Aydinoglu, M.N., ' Stresses in adhesively bonded joints: A closed-form 
solution,'J. of Comwsite Materials, 15, (1981) p. 249. 
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